Metamath Proof Explorer


Theorem rhmeql

Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion rhmeql F S RingHom T G S RingHom T dom F G SubRing S

Proof

Step Hyp Ref Expression
1 rhmghm F S RingHom T F S GrpHom T
2 rhmghm G S RingHom T G S GrpHom T
3 ghmeql F S GrpHom T G S GrpHom T dom F G SubGrp S
4 1 2 3 syl2an F S RingHom T G S RingHom T dom F G SubGrp S
5 eqid mulGrp S = mulGrp S
6 eqid mulGrp T = mulGrp T
7 5 6 rhmmhm F S RingHom T F mulGrp S MndHom mulGrp T
8 5 6 rhmmhm G S RingHom T G mulGrp S MndHom mulGrp T
9 mhmeql F mulGrp S MndHom mulGrp T G mulGrp S MndHom mulGrp T dom F G SubMnd mulGrp S
10 7 8 9 syl2an F S RingHom T G S RingHom T dom F G SubMnd mulGrp S
11 rhmrcl1 F S RingHom T S Ring
12 11 adantr F S RingHom T G S RingHom T S Ring
13 5 issubrg3 S Ring dom F G SubRing S dom F G SubGrp S dom F G SubMnd mulGrp S
14 12 13 syl F S RingHom T G S RingHom T dom F G SubRing S dom F G SubGrp S dom F G SubMnd mulGrp S
15 4 10 14 mpbir2and F S RingHom T G S RingHom T dom F G SubRing S