Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
rhmf
Next ⟩
rhmmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
rhmf
Description:
A ring homomorphism is a function.
(Contributed by
Stefan O'Rear
, 8-Mar-2015)
Ref
Expression
Hypotheses
rhmf.b
⊢
B
=
Base
R
rhmf.c
⊢
C
=
Base
S
Assertion
rhmf
⊢
F
∈
R
RingHom
S
→
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
rhmf.b
⊢
B
=
Base
R
2
rhmf.c
⊢
C
=
Base
S
3
rhmghm
⊢
F
∈
R
RingHom
S
→
F
∈
R
GrpHom
S
4
1
2
ghmf
⊢
F
∈
R
GrpHom
S
→
F
:
B
⟶
C
5
3
4
syl
⊢
F
∈
R
RingHom
S
→
F
:
B
⟶
C