Metamath Proof Explorer


Theorem rhmf

Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhmf.b B = Base R
rhmf.c C = Base S
Assertion rhmf F R RingHom S F : B C

Proof

Step Hyp Ref Expression
1 rhmf.b B = Base R
2 rhmf.c C = Base S
3 rhmghm F R RingHom S F R GrpHom S
4 1 2 ghmf F R GrpHom S F : B C
5 3 4 syl F R RingHom S F : B C