Metamath Proof Explorer


Theorem rhmf1o

Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses rhmf1o.b B = Base R
rhmf1o.c C = Base S
Assertion rhmf1o F R RingHom S F : B 1-1 onto C F -1 S RingHom R

Proof

Step Hyp Ref Expression
1 rhmf1o.b B = Base R
2 rhmf1o.c C = Base S
3 rhmrcl2 F R RingHom S S Ring
4 rhmrcl1 F R RingHom S R Ring
5 3 4 jca F R RingHom S S Ring R Ring
6 5 adantr F R RingHom S F : B 1-1 onto C S Ring R Ring
7 simpr F R RingHom S F : B 1-1 onto C F : B 1-1 onto C
8 rhmghm F R RingHom S F R GrpHom S
9 8 adantr F R RingHom S F : B 1-1 onto C F R GrpHom S
10 1 2 ghmf1o F R GrpHom S F : B 1-1 onto C F -1 S GrpHom R
11 10 bicomd F R GrpHom S F -1 S GrpHom R F : B 1-1 onto C
12 9 11 syl F R RingHom S F : B 1-1 onto C F -1 S GrpHom R F : B 1-1 onto C
13 7 12 mpbird F R RingHom S F : B 1-1 onto C F -1 S GrpHom R
14 eqidd F R RingHom S F = F
15 eqid mulGrp R = mulGrp R
16 15 1 mgpbas B = Base mulGrp R
17 16 a1i F R RingHom S B = Base mulGrp R
18 eqid mulGrp S = mulGrp S
19 18 2 mgpbas C = Base mulGrp S
20 19 a1i F R RingHom S C = Base mulGrp S
21 14 17 20 f1oeq123d F R RingHom S F : B 1-1 onto C F : Base mulGrp R 1-1 onto Base mulGrp S
22 21 biimpa F R RingHom S F : B 1-1 onto C F : Base mulGrp R 1-1 onto Base mulGrp S
23 15 18 rhmmhm F R RingHom S F mulGrp R MndHom mulGrp S
24 23 adantr F R RingHom S F : B 1-1 onto C F mulGrp R MndHom mulGrp S
25 eqid Base mulGrp R = Base mulGrp R
26 eqid Base mulGrp S = Base mulGrp S
27 25 26 mhmf1o F mulGrp R MndHom mulGrp S F : Base mulGrp R 1-1 onto Base mulGrp S F -1 mulGrp S MndHom mulGrp R
28 27 bicomd F mulGrp R MndHom mulGrp S F -1 mulGrp S MndHom mulGrp R F : Base mulGrp R 1-1 onto Base mulGrp S
29 24 28 syl F R RingHom S F : B 1-1 onto C F -1 mulGrp S MndHom mulGrp R F : Base mulGrp R 1-1 onto Base mulGrp S
30 22 29 mpbird F R RingHom S F : B 1-1 onto C F -1 mulGrp S MndHom mulGrp R
31 13 30 jca F R RingHom S F : B 1-1 onto C F -1 S GrpHom R F -1 mulGrp S MndHom mulGrp R
32 18 15 isrhm F -1 S RingHom R S Ring R Ring F -1 S GrpHom R F -1 mulGrp S MndHom mulGrp R
33 6 31 32 sylanbrc F R RingHom S F : B 1-1 onto C F -1 S RingHom R
34 1 2 rhmf F R RingHom S F : B C
35 34 adantr F R RingHom S F -1 S RingHom R F : B C
36 35 ffnd F R RingHom S F -1 S RingHom R F Fn B
37 2 1 rhmf F -1 S RingHom R F -1 : C B
38 37 adantl F R RingHom S F -1 S RingHom R F -1 : C B
39 38 ffnd F R RingHom S F -1 S RingHom R F -1 Fn C
40 dff1o4 F : B 1-1 onto C F Fn B F -1 Fn C
41 36 39 40 sylanbrc F R RingHom S F -1 S RingHom R F : B 1-1 onto C
42 33 41 impbida F R RingHom S F : B 1-1 onto C F -1 S RingHom R