Metamath Proof Explorer


Theorem rhmghm

Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion rhmghm F R RingHom S F R GrpHom S

Proof

Step Hyp Ref Expression
1 eqid mulGrp R = mulGrp R
2 eqid mulGrp S = mulGrp S
3 1 2 isrhm F R RingHom S R Ring S Ring F R GrpHom S F mulGrp R MndHom mulGrp S
4 3 simprbi F R RingHom S F R GrpHom S F mulGrp R MndHom mulGrp S
5 4 simpld F R RingHom S F R GrpHom S