Metamath Proof Explorer


Theorem rhmima

Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion rhmima F M RingHom N X SubRing M F X SubRing N

Proof

Step Hyp Ref Expression
1 rhmghm F M RingHom N F M GrpHom N
2 subrgsubg X SubRing M X SubGrp M
3 ghmima F M GrpHom N X SubGrp M F X SubGrp N
4 1 2 3 syl2an F M RingHom N X SubRing M F X SubGrp N
5 eqid mulGrp M = mulGrp M
6 eqid mulGrp N = mulGrp N
7 5 6 rhmmhm F M RingHom N F mulGrp M MndHom mulGrp N
8 5 subrgsubm X SubRing M X SubMnd mulGrp M
9 mhmima F mulGrp M MndHom mulGrp N X SubMnd mulGrp M F X SubMnd mulGrp N
10 7 8 9 syl2an F M RingHom N X SubRing M F X SubMnd mulGrp N
11 rhmrcl2 F M RingHom N N Ring
12 11 adantr F M RingHom N X SubRing M N Ring
13 6 issubrg3 N Ring F X SubRing N F X SubGrp N F X SubMnd mulGrp N
14 12 13 syl F M RingHom N X SubRing M F X SubRing N F X SubGrp N F X SubMnd mulGrp N
15 4 10 14 mpbir2and F M RingHom N X SubRing M F X SubRing N