Metamath Proof Explorer


Theorem rhmimasubrng

Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025)

Ref Expression
Assertion rhmimasubrng F M RingHom N X SubRng M F X SubRng N

Proof

Step Hyp Ref Expression
1 rhmghm F M RingHom N F M GrpHom N
2 subrngsubg X SubRng M X SubGrp M
3 ghmima F M GrpHom N X SubGrp M F X SubGrp N
4 1 2 3 syl2an F M RingHom N X SubRng M F X SubGrp N
5 eqid mulGrp M = mulGrp M
6 eqid mulGrp N = mulGrp N
7 5 6 rhmmhm F M RingHom N F mulGrp M MndHom mulGrp N
8 simpl F mulGrp M MndHom mulGrp N X SubRng M F mulGrp M MndHom mulGrp N
9 eqid Base M = Base M
10 5 9 mgpbas Base M = Base mulGrp M
11 10 eqcomi Base mulGrp M = Base M
12 11 subrngss X SubRng M X Base mulGrp M
13 12 adantl F mulGrp M MndHom mulGrp N X SubRng M X Base mulGrp M
14 eqidd F mulGrp M MndHom mulGrp N X SubRng M + mulGrp M = + mulGrp M
15 eqidd F mulGrp M MndHom mulGrp N X SubRng M + mulGrp N = + mulGrp N
16 eqid M = M
17 5 16 mgpplusg M = + mulGrp M
18 17 eqcomi + mulGrp M = M
19 18 subrngmcl X SubRng M z X x X z + mulGrp M x X
20 19 3adant1l F mulGrp M MndHom mulGrp N X SubRng M z X x X z + mulGrp M x X
21 8 13 14 15 20 mhmimalem F mulGrp M MndHom mulGrp N X SubRng M x F X y F X x + mulGrp N y F X
22 eqid N = N
23 6 22 mgpplusg N = + mulGrp N
24 23 eqcomi + mulGrp N = N
25 24 oveqi x + mulGrp N y = x N y
26 25 eleq1i x + mulGrp N y F X x N y F X
27 26 2ralbii x F X y F X x + mulGrp N y F X x F X y F X x N y F X
28 21 27 sylib F mulGrp M MndHom mulGrp N X SubRng M x F X y F X x N y F X
29 7 28 sylan F M RingHom N X SubRng M x F X y F X x N y F X
30 rhmrcl2 F M RingHom N N Ring
31 ringrng N Ring N Rng
32 30 31 syl F M RingHom N N Rng
33 32 adantr F M RingHom N X SubRng M N Rng
34 eqid Base N = Base N
35 34 22 issubrng2 N Rng F X SubRng N F X SubGrp N x F X y F X x N y F X
36 33 35 syl F M RingHom N X SubRng M F X SubRng N F X SubGrp N x F X y F X x N y F X
37 4 29 36 mpbir2and F M RingHom N X SubRng M F X SubRng N