| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmghm |
|
| 2 |
|
subrngsubg |
|
| 3 |
|
ghmima |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
rhmmhm |
|
| 8 |
|
simpl |
|
| 9 |
|
eqid |
|
| 10 |
5 9
|
mgpbas |
|
| 11 |
10
|
eqcomi |
|
| 12 |
11
|
subrngss |
|
| 13 |
12
|
adantl |
|
| 14 |
|
eqidd |
|
| 15 |
|
eqidd |
|
| 16 |
|
eqid |
|
| 17 |
5 16
|
mgpplusg |
|
| 18 |
17
|
eqcomi |
|
| 19 |
18
|
subrngmcl |
|
| 20 |
19
|
3adant1l |
|
| 21 |
8 13 14 15 20
|
mhmimalem |
|
| 22 |
|
eqid |
|
| 23 |
6 22
|
mgpplusg |
|
| 24 |
23
|
eqcomi |
|
| 25 |
24
|
oveqi |
|
| 26 |
25
|
eleq1i |
|
| 27 |
26
|
2ralbii |
|
| 28 |
21 27
|
sylib |
|
| 29 |
7 28
|
sylan |
|
| 30 |
|
rhmrcl2 |
|
| 31 |
|
ringrng |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
eqid |
|
| 35 |
34 22
|
issubrng2 |
|
| 36 |
33 35
|
syl |
|
| 37 |
4 29 36
|
mpbir2and |
|