Metamath Proof Explorer


Theorem rhmimasubrng

Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025)

Ref Expression
Assertion rhmimasubrng Could not format assertion : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rhmghm F M RingHom N F M GrpHom N
2 subrngsubg Could not format ( X e. ( SubRng ` M ) -> X e. ( SubGrp ` M ) ) : No typesetting found for |- ( X e. ( SubRng ` M ) -> X e. ( SubGrp ` M ) ) with typecode |-
3 ghmima F M GrpHom N X SubGrp M F X SubGrp N
4 1 2 3 syl2an Could not format ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) with typecode |-
5 eqid mulGrp M = mulGrp M
6 eqid mulGrp N = mulGrp N
7 5 6 rhmmhm F M RingHom N F mulGrp M MndHom mulGrp N
8 simpl Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) with typecode |-
9 eqid Base M = Base M
10 5 9 mgpbas Base M = Base mulGrp M
11 10 eqcomi Base mulGrp M = Base M
12 11 subrngss Could not format ( X e. ( SubRng ` M ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) : No typesetting found for |- ( X e. ( SubRng ` M ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) with typecode |-
13 12 adantl Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) with typecode |-
14 eqidd Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` M ) ) = ( +g ` ( mulGrp ` M ) ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` M ) ) = ( +g ` ( mulGrp ` M ) ) ) with typecode |-
15 eqidd Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` N ) ) = ( +g ` ( mulGrp ` N ) ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` N ) ) = ( +g ` ( mulGrp ` N ) ) ) with typecode |-
16 eqid M = M
17 5 16 mgpplusg M = + mulGrp M
18 17 eqcomi + mulGrp M = M
19 18 subrngmcl Could not format ( ( X e. ( SubRng ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) : No typesetting found for |- ( ( X e. ( SubRng ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) with typecode |-
20 19 3adant1l Could not format ( ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) : No typesetting found for |- ( ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) with typecode |-
21 8 13 14 15 20 mhmimalem Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) ) with typecode |-
22 eqid N = N
23 6 22 mgpplusg N = + mulGrp N
24 23 eqcomi + mulGrp N = N
25 24 oveqi x + mulGrp N y = x N y
26 25 eleq1i x + mulGrp N y F X x N y F X
27 26 2ralbii x F X y F X x + mulGrp N y F X x F X y F X x N y F X
28 21 27 sylib Could not format ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) : No typesetting found for |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) with typecode |-
29 7 28 sylan Could not format ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) with typecode |-
30 rhmrcl2 F M RingHom N N Ring
31 ringrng N Ring N Rng
32 30 31 syl F M RingHom N N Rng
33 32 adantr Could not format ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> N e. Rng ) : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> N e. Rng ) with typecode |-
34 eqid Base N = Base N
35 34 22 issubrng2 Could not format ( N e. Rng -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) : No typesetting found for |- ( N e. Rng -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) with typecode |-
36 33 35 syl Could not format ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) with typecode |-
37 4 29 36 mpbir2and Could not format ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) : No typesetting found for |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) with typecode |-