Metamath Proof Explorer


Theorem rhmimasubrnglem

Description: Lemma for rhmimasubrng : Modified part of mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)

Ref Expression
Hypothesis rhmimasubrnglem.b M = mulGrp R
Assertion rhmimasubrnglem F M MndHom N X SubRng R x F X y F X x + N y F X

Proof

Step Hyp Ref Expression
1 rhmimasubrnglem.b M = mulGrp R
2 simpll F M MndHom N X SubRng R z X x X F M MndHom N
3 eqid Base R = Base R
4 3 subrngss X SubRng R X Base R
5 1 3 mgpbas Base R = Base M
6 4 5 sseqtrdi X SubRng R X Base M
7 6 adantl F M MndHom N X SubRng R X Base M
8 7 adantr F M MndHom N X SubRng R z X x X X Base M
9 simprl F M MndHom N X SubRng R z X x X z X
10 8 9 sseldd F M MndHom N X SubRng R z X x X z Base M
11 simprr F M MndHom N X SubRng R z X x X x X
12 8 11 sseldd F M MndHom N X SubRng R z X x X x Base M
13 eqid Base M = Base M
14 eqid + M = + M
15 eqid + N = + N
16 13 14 15 mhmlin F M MndHom N z Base M x Base M F z + M x = F z + N F x
17 2 10 12 16 syl3anc F M MndHom N X SubRng R z X x X F z + M x = F z + N F x
18 eqid Base N = Base N
19 13 18 mhmf F M MndHom N F : Base M Base N
20 19 adantr F M MndHom N X SubRng R F : Base M Base N
21 20 ffnd F M MndHom N X SubRng R F Fn Base M
22 21 adantr F M MndHom N X SubRng R z X x X F Fn Base M
23 eqid R = R
24 1 23 mgpplusg R = + M
25 24 eqcomi + M = R
26 25 subrngmcl X SubRng R z X x X z + M x X
27 26 3expb X SubRng R z X x X z + M x X
28 27 adantll F M MndHom N X SubRng R z X x X z + M x X
29 fnfvima F Fn Base M X Base M z + M x X F z + M x F X
30 22 8 28 29 syl3anc F M MndHom N X SubRng R z X x X F z + M x F X
31 17 30 eqeltrrd F M MndHom N X SubRng R z X x X F z + N F x F X
32 31 anassrs F M MndHom N X SubRng R z X x X F z + N F x F X
33 32 ralrimiva F M MndHom N X SubRng R z X x X F z + N F x F X
34 oveq2 y = F x F z + N y = F z + N F x
35 34 eleq1d y = F x F z + N y F X F z + N F x F X
36 35 ralima F Fn Base M X Base M y F X F z + N y F X x X F z + N F x F X
37 21 7 36 syl2anc F M MndHom N X SubRng R y F X F z + N y F X x X F z + N F x F X
38 37 adantr F M MndHom N X SubRng R z X y F X F z + N y F X x X F z + N F x F X
39 33 38 mpbird F M MndHom N X SubRng R z X y F X F z + N y F X
40 39 ralrimiva F M MndHom N X SubRng R z X y F X F z + N y F X
41 oveq1 x = F z x + N y = F z + N y
42 41 eleq1d x = F z x + N y F X F z + N y F X
43 42 ralbidv x = F z y F X x + N y F X y F X F z + N y F X
44 43 ralima F Fn Base M X Base M x F X y F X x + N y F X z X y F X F z + N y F X
45 21 7 44 syl2anc F M MndHom N X SubRng R x F X y F X x + N y F X z X y F X F z + N y F X
46 40 45 mpbird F M MndHom N X SubRng R x F X y F X x + N y F X