Metamath Proof Explorer


Theorem rhmmul

Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses rhmmul.x X = Base R
rhmmul.m · ˙ = R
rhmmul.n × ˙ = S
Assertion rhmmul F R RingHom S A X B X F A · ˙ B = F A × ˙ F B

Proof

Step Hyp Ref Expression
1 rhmmul.x X = Base R
2 rhmmul.m · ˙ = R
3 rhmmul.n × ˙ = S
4 eqid mulGrp R = mulGrp R
5 eqid mulGrp S = mulGrp S
6 4 5 rhmmhm F R RingHom S F mulGrp R MndHom mulGrp S
7 4 1 mgpbas X = Base mulGrp R
8 4 2 mgpplusg · ˙ = + mulGrp R
9 5 3 mgpplusg × ˙ = + mulGrp S
10 7 8 9 mhmlin F mulGrp R MndHom mulGrp S A X B X F A · ˙ B = F A × ˙ F B
11 6 10 syl3an1 F R RingHom S A X B X F A · ˙ B = F A × ˙ F B