| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
rhmrcl1 |
|
| 7 |
|
eqid |
|
| 8 |
7
|
opprringb |
|
| 9 |
6 8
|
sylib |
|
| 10 |
|
rhmrcl2 |
|
| 11 |
|
eqid |
|
| 12 |
11
|
opprringb |
|
| 13 |
10 12
|
sylib |
|
| 14 |
|
eqid |
|
| 15 |
7 14
|
oppr1 |
|
| 16 |
15
|
eqcomi |
|
| 17 |
|
eqid |
|
| 18 |
11 17
|
oppr1 |
|
| 19 |
18
|
eqcomi |
|
| 20 |
16 19
|
rhm1 |
|
| 21 |
|
simpl |
|
| 22 |
|
simprr |
|
| 23 |
|
eqid |
|
| 24 |
7 23
|
opprbas |
|
| 25 |
22 24
|
eleqtrrdi |
|
| 26 |
|
simprl |
|
| 27 |
26 24
|
eleqtrrdi |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
23 28 29
|
rhmmul |
|
| 31 |
21 25 27 30
|
syl3anc |
|
| 32 |
23 28 7 4
|
opprmul |
|
| 33 |
32
|
fveq2i |
|
| 34 |
|
eqid |
|
| 35 |
34 29 11 5
|
opprmul |
|
| 36 |
31 33 35
|
3eqtr4g |
|
| 37 |
|
ringgrp |
|
| 38 |
9 37
|
syl |
|
| 39 |
|
ringgrp |
|
| 40 |
13 39
|
syl |
|
| 41 |
23 34
|
rhmf |
|
| 42 |
|
rhmghm |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simplr |
|
| 45 |
|
simpr |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
23 46 47
|
ghmlin |
|
| 49 |
43 44 45 48
|
syl3anc |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
41 51
|
jca |
|
| 53 |
38 40 52
|
jca31 |
|
| 54 |
11 34
|
opprbas |
|
| 55 |
7 46
|
oppradd |
|
| 56 |
11 47
|
oppradd |
|
| 57 |
24 54 55 56
|
isghm |
|
| 58 |
53 57
|
sylibr |
|
| 59 |
1 2 3 4 5 9 13 20 36 58
|
isrhm2d |
|