Metamath Proof Explorer


Theorem rhmply1mon

Description: Apply a ring homomorphism between two univariate polynomial algebras to a scaled monomial, as in ply1coe . (Contributed by SN, 20-May-2025)

Ref Expression
Hypotheses rhmply1mon.p P = Poly 1 R
rhmply1mon.q Q = Poly 1 S
rhmply1mon.b B = Base P
rhmply1mon.k K = Base R
rhmply1mon.f F = p B H p
rhmply1mon.x X = var 1 R
rhmply1mon.y Y = var 1 S
rhmply1mon.t · ˙ = P
rhmply1mon.u ˙ = Q
rhmply1mon.m M = mulGrp P
rhmply1mon.n N = mulGrp Q
rhmply1mon.l × ˙ = M
rhmply1mon.w ˙ = N
rhmply1mon.h φ H R RingHom S
rhmply1mon.c φ C K
rhmply1mon.e φ E 0
Assertion rhmply1mon φ F C · ˙ E × ˙ X = H C ˙ E ˙ Y

Proof

Step Hyp Ref Expression
1 rhmply1mon.p P = Poly 1 R
2 rhmply1mon.q Q = Poly 1 S
3 rhmply1mon.b B = Base P
4 rhmply1mon.k K = Base R
5 rhmply1mon.f F = p B H p
6 rhmply1mon.x X = var 1 R
7 rhmply1mon.y Y = var 1 S
8 rhmply1mon.t · ˙ = P
9 rhmply1mon.u ˙ = Q
10 rhmply1mon.m M = mulGrp P
11 rhmply1mon.n N = mulGrp Q
12 rhmply1mon.l × ˙ = M
13 rhmply1mon.w ˙ = N
14 rhmply1mon.h φ H R RingHom S
15 rhmply1mon.c φ C K
16 rhmply1mon.e φ E 0
17 10 3 mgpbas B = Base M
18 rhmrcl1 H R RingHom S R Ring
19 14 18 syl φ R Ring
20 1 ply1ring R Ring P Ring
21 19 20 syl φ P Ring
22 10 ringmgp P Ring M Mnd
23 21 22 syl φ M Mnd
24 6 1 3 vr1cl R Ring X B
25 19 24 syl φ X B
26 17 12 23 16 25 mulgnn0cld φ E × ˙ X B
27 1 2 3 4 5 8 9 14 15 26 rhmply1vsca φ F C · ˙ E × ˙ X = H C ˙ F E × ˙ X
28 1 2 3 5 14 rhmply1 φ F P RingHom Q
29 10 11 rhmmhm F P RingHom Q F M MndHom N
30 28 29 syl φ F M MndHom N
31 17 12 13 mhmmulg F M MndHom N E 0 X B F E × ˙ X = E ˙ F X
32 30 16 25 31 syl3anc φ F E × ˙ X = E ˙ F X
33 1 2 3 5 6 7 14 rhmply1vr1 φ F X = Y
34 33 oveq2d φ E ˙ F X = E ˙ Y
35 32 34 eqtrd φ F E × ˙ X = E ˙ Y
36 35 oveq2d φ H C ˙ F E × ˙ X = H C ˙ E ˙ Y
37 27 36 eqtrd φ F C · ˙ E × ˙ X = H C ˙ E ˙ Y