Metamath Proof Explorer


Theorem rhmpropd

Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses rhmpropd.a φB=BaseJ
rhmpropd.b φC=BaseK
rhmpropd.c φB=BaseL
rhmpropd.d φC=BaseM
rhmpropd.e φxByBx+Jy=x+Ly
rhmpropd.f φxCyCx+Ky=x+My
rhmpropd.g φxByBxJy=xLy
rhmpropd.h φxCyCxKy=xMy
Assertion rhmpropd φJRingHomK=LRingHomM

Proof

Step Hyp Ref Expression
1 rhmpropd.a φB=BaseJ
2 rhmpropd.b φC=BaseK
3 rhmpropd.c φB=BaseL
4 rhmpropd.d φC=BaseM
5 rhmpropd.e φxByBx+Jy=x+Ly
6 rhmpropd.f φxCyCx+Ky=x+My
7 rhmpropd.g φxByBxJy=xLy
8 rhmpropd.h φxCyCxKy=xMy
9 1 3 5 7 ringpropd φJRingLRing
10 2 4 6 8 ringpropd φKRingMRing
11 9 10 anbi12d φJRingKRingLRingMRing
12 1 2 3 4 5 6 ghmpropd φJGrpHomK=LGrpHomM
13 12 eleq2d φfJGrpHomKfLGrpHomM
14 eqid mulGrpJ=mulGrpJ
15 eqid BaseJ=BaseJ
16 14 15 mgpbas BaseJ=BasemulGrpJ
17 1 16 eqtrdi φB=BasemulGrpJ
18 eqid mulGrpK=mulGrpK
19 eqid BaseK=BaseK
20 18 19 mgpbas BaseK=BasemulGrpK
21 2 20 eqtrdi φC=BasemulGrpK
22 eqid mulGrpL=mulGrpL
23 eqid BaseL=BaseL
24 22 23 mgpbas BaseL=BasemulGrpL
25 3 24 eqtrdi φB=BasemulGrpL
26 eqid mulGrpM=mulGrpM
27 eqid BaseM=BaseM
28 26 27 mgpbas BaseM=BasemulGrpM
29 4 28 eqtrdi φC=BasemulGrpM
30 eqid J=J
31 14 30 mgpplusg J=+mulGrpJ
32 31 oveqi xJy=x+mulGrpJy
33 eqid L=L
34 22 33 mgpplusg L=+mulGrpL
35 34 oveqi xLy=x+mulGrpLy
36 7 32 35 3eqtr3g φxByBx+mulGrpJy=x+mulGrpLy
37 eqid K=K
38 18 37 mgpplusg K=+mulGrpK
39 38 oveqi xKy=x+mulGrpKy
40 eqid M=M
41 26 40 mgpplusg M=+mulGrpM
42 41 oveqi xMy=x+mulGrpMy
43 8 39 42 3eqtr3g φxCyCx+mulGrpKy=x+mulGrpMy
44 17 21 25 29 36 43 mhmpropd φmulGrpJMndHommulGrpK=mulGrpLMndHommulGrpM
45 44 eleq2d φfmulGrpJMndHommulGrpKfmulGrpLMndHommulGrpM
46 13 45 anbi12d φfJGrpHomKfmulGrpJMndHommulGrpKfLGrpHomMfmulGrpLMndHommulGrpM
47 11 46 anbi12d φJRingKRingfJGrpHomKfmulGrpJMndHommulGrpKLRingMRingfLGrpHomMfmulGrpLMndHommulGrpM
48 14 18 isrhm fJRingHomKJRingKRingfJGrpHomKfmulGrpJMndHommulGrpK
49 22 26 isrhm fLRingHomMLRingMRingfLGrpHomMfmulGrpLMndHommulGrpM
50 47 48 49 3bitr4g φfJRingHomKfLRingHomM
51 50 eqrdv φJRingHomK=LRingHomM