Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpropd.a |
|
2 |
|
rhmpropd.b |
|
3 |
|
rhmpropd.c |
|
4 |
|
rhmpropd.d |
|
5 |
|
rhmpropd.e |
|
6 |
|
rhmpropd.f |
|
7 |
|
rhmpropd.g |
|
8 |
|
rhmpropd.h |
|
9 |
1 3 5 7
|
ringpropd |
|
10 |
2 4 6 8
|
ringpropd |
|
11 |
9 10
|
anbi12d |
|
12 |
1 2 3 4 5 6
|
ghmpropd |
|
13 |
12
|
eleq2d |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 15
|
mgpbas |
|
17 |
1 16
|
eqtrdi |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
18 19
|
mgpbas |
|
21 |
2 20
|
eqtrdi |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
22 23
|
mgpbas |
|
25 |
3 24
|
eqtrdi |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
26 27
|
mgpbas |
|
29 |
4 28
|
eqtrdi |
|
30 |
|
eqid |
|
31 |
14 30
|
mgpplusg |
|
32 |
31
|
oveqi |
|
33 |
|
eqid |
|
34 |
22 33
|
mgpplusg |
|
35 |
34
|
oveqi |
|
36 |
7 32 35
|
3eqtr3g |
|
37 |
|
eqid |
|
38 |
18 37
|
mgpplusg |
|
39 |
38
|
oveqi |
|
40 |
|
eqid |
|
41 |
26 40
|
mgpplusg |
|
42 |
41
|
oveqi |
|
43 |
8 39 42
|
3eqtr3g |
|
44 |
17 21 25 29 36 43
|
mhmpropd |
|
45 |
44
|
eleq2d |
|
46 |
13 45
|
anbi12d |
|
47 |
11 46
|
anbi12d |
|
48 |
14 18
|
isrhm |
|
49 |
22 26
|
isrhm |
|
50 |
47 48 49
|
3bitr4g |
|
51 |
50
|
eqrdv |
|