Metamath Proof Explorer


Theorem rhmqusker

Description: A surjective ring homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses rhmqusker.1 0 ˙ = 0 H
rhmqusker.f φ F G RingHom H
rhmqusker.k K = F -1 0 ˙
rhmqusker.q Q = G / 𝑠 G ~ QG K
rhmqusker.s φ ran F = Base H
rhmqusker.2 φ G CRing
rhmqusker.j J = q Base Q F q
Assertion rhmqusker φ J Q RingIso H

Proof

Step Hyp Ref Expression
1 rhmqusker.1 0 ˙ = 0 H
2 rhmqusker.f φ F G RingHom H
3 rhmqusker.k K = F -1 0 ˙
4 rhmqusker.q Q = G / 𝑠 G ~ QG K
5 rhmqusker.s φ ran F = Base H
6 rhmqusker.2 φ G CRing
7 rhmqusker.j J = q Base Q F q
8 1 2 3 4 7 6 rhmquskerlem φ J Q RingHom H
9 rhmghm F G RingHom H F G GrpHom H
10 2 9 syl φ F G GrpHom H
11 1 10 3 4 7 5 ghmqusker φ J Q GrpIso H
12 eqid Base Q = Base Q
13 eqid Base H = Base H
14 12 13 gimf1o J Q GrpIso H J : Base Q 1-1 onto Base H
15 11 14 syl φ J : Base Q 1-1 onto Base H
16 12 13 isrim J Q RingIso H J Q RingHom H J : Base Q 1-1 onto Base H
17 8 15 16 sylanbrc φ J Q RingIso H