Metamath Proof Explorer


Theorem rhmquskerlem

Description: The mapping J induced by a ring homomorphism F from the quotient group Q over F 's kernel K is a ring homomorphism. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses rhmqusker.1 0 ˙ = 0 H
rhmqusker.f φ F G RingHom H
rhmqusker.k K = F -1 0 ˙
rhmqusker.q Q = G / 𝑠 G ~ QG K
rhmquskerlem.j J = q Base Q F q
rhmquskerlem.2 φ G CRing
Assertion rhmquskerlem φ J Q RingHom H

Proof

Step Hyp Ref Expression
1 rhmqusker.1 0 ˙ = 0 H
2 rhmqusker.f φ F G RingHom H
3 rhmqusker.k K = F -1 0 ˙
4 rhmqusker.q Q = G / 𝑠 G ~ QG K
5 rhmquskerlem.j J = q Base Q F q
6 rhmquskerlem.2 φ G CRing
7 eqid Base Q = Base Q
8 eqid 1 Q = 1 Q
9 eqid 1 H = 1 H
10 eqid Q = Q
11 eqid H = H
12 rhmrcl1 F G RingHom H G Ring
13 2 12 syl φ G Ring
14 eqid LIdeal G = LIdeal G
15 14 1 kerlidl F G RingHom H F -1 0 ˙ LIdeal G
16 2 15 syl φ F -1 0 ˙ LIdeal G
17 3 16 eqeltrid φ K LIdeal G
18 14 crng2idl G CRing LIdeal G = 2Ideal G
19 6 18 syl φ LIdeal G = 2Ideal G
20 17 19 eleqtrd φ K 2Ideal G
21 eqid 2Ideal G = 2Ideal G
22 eqid 1 G = 1 G
23 4 21 22 qus1 G Ring K 2Ideal G Q Ring 1 G G ~ QG K = 1 Q
24 13 20 23 syl2anc φ Q Ring 1 G G ~ QG K = 1 Q
25 24 simpld φ Q Ring
26 rhmrcl2 F G RingHom H H Ring
27 2 26 syl φ H Ring
28 rhmghm F G RingHom H F G GrpHom H
29 2 28 syl φ F G GrpHom H
30 eqid Base G = Base G
31 30 22 ringidcl G Ring 1 G Base G
32 13 31 syl φ 1 G Base G
33 1 29 3 4 5 32 ghmquskerlem1 φ J 1 G G ~ QG K = F 1 G
34 24 simprd φ 1 G G ~ QG K = 1 Q
35 34 fveq2d φ J 1 G G ~ QG K = J 1 Q
36 22 9 rhm1 F G RingHom H F 1 G = 1 H
37 2 36 syl φ F 1 G = 1 H
38 33 35 37 3eqtr3d φ J 1 Q = 1 H
39 2 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y F G RingHom H
40 4 a1i φ Q = G / 𝑠 G ~ QG K
41 eqidd φ Base G = Base G
42 ovexd φ G ~ QG K V
43 40 41 42 6 qusbas φ Base G / G ~ QG K = Base Q
44 1 ghmker F G GrpHom H F -1 0 ˙ NrmSGrp G
45 29 44 syl φ F -1 0 ˙ NrmSGrp G
46 3 45 eqeltrid φ K NrmSGrp G
47 nsgsubg K NrmSGrp G K SubGrp G
48 eqid G ~ QG K = G ~ QG K
49 30 48 eqger K SubGrp G G ~ QG K Er Base G
50 46 47 49 3syl φ G ~ QG K Er Base G
51 50 qsss φ Base G / G ~ QG K 𝒫 Base G
52 43 51 eqsstrrd φ Base Q 𝒫 Base G
53 52 sselda φ r Base Q r 𝒫 Base G
54 53 elpwid φ r Base Q r Base G
55 54 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G
56 simp-4r φ r Base Q s Base Q x r J r = F x y s J s = F y x r
57 55 56 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y x Base G
58 52 sselda φ s Base Q s 𝒫 Base G
59 58 elpwid φ s Base Q s Base G
60 59 adantlr φ r Base Q s Base Q s Base G
61 60 ad4antr φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G
62 simplr φ r Base Q s Base Q x r J r = F x y s J s = F y y s
63 61 62 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y y Base G
64 eqid G = G
65 30 64 11 rhmmul F G RingHom H x Base G y Base G F x G y = F x H F y
66 39 57 63 65 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y F x G y = F x H F y
67 50 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G ~ QG K Er Base G
68 simp-6r φ r Base Q s Base Q x r J r = F x y s J s = F y r Base Q
69 43 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y Base G / G ~ QG K = Base Q
70 68 69 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G / G ~ QG K
71 qsel G ~ QG K Er Base G r Base G / G ~ QG K x r r = x G ~ QG K
72 67 70 56 71 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y r = x G ~ QG K
73 simp-5r φ r Base Q s Base Q x r J r = F x y s J s = F y s Base Q
74 73 69 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G / G ~ QG K
75 qsel G ~ QG K Er Base G s Base G / G ~ QG K y s s = y G ~ QG K
76 67 74 62 75 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y s = y G ~ QG K
77 72 76 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y r Q s = x G ~ QG K Q y G ~ QG K
78 6 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G CRing
79 17 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y K LIdeal G
80 4 30 64 10 78 79 57 63 qusmul φ r Base Q s Base Q x r J r = F x y s J s = F y x G ~ QG K Q y G ~ QG K = x G y G ~ QG K
81 77 80 eqtr2d φ r Base Q s Base Q x r J r = F x y s J s = F y x G y G ~ QG K = r Q s
82 81 fveq2d φ r Base Q s Base Q x r J r = F x y s J s = F y J x G y G ~ QG K = J r Q s
83 39 28 syl φ r Base Q s Base Q x r J r = F x y s J s = F y F G GrpHom H
84 39 12 syl φ r Base Q s Base Q x r J r = F x y s J s = F y G Ring
85 30 64 84 57 63 ringcld φ r Base Q s Base Q x r J r = F x y s J s = F y x G y Base G
86 1 83 3 4 5 85 ghmquskerlem1 φ r Base Q s Base Q x r J r = F x y s J s = F y J x G y G ~ QG K = F x G y
87 82 86 eqtr3d φ r Base Q s Base Q x r J r = F x y s J s = F y J r Q s = F x G y
88 simpllr φ r Base Q s Base Q x r J r = F x y s J s = F y J r = F x
89 simpr φ r Base Q s Base Q x r J r = F x y s J s = F y J s = F y
90 88 89 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y J r H J s = F x H F y
91 66 87 90 3eqtr4d φ r Base Q s Base Q x r J r = F x y s J s = F y J r Q s = J r H J s
92 29 ad4antr φ r Base Q s Base Q x r J r = F x F G GrpHom H
93 simpllr φ r Base Q s Base Q x r J r = F x s Base Q
94 1 92 3 4 5 93 ghmquskerlem2 φ r Base Q s Base Q x r J r = F x y s J s = F y
95 91 94 r19.29a φ r Base Q s Base Q x r J r = F x J r Q s = J r H J s
96 29 ad2antrr φ r Base Q s Base Q F G GrpHom H
97 simplr φ r Base Q s Base Q r Base Q
98 1 96 3 4 5 97 ghmquskerlem2 φ r Base Q s Base Q x r J r = F x
99 95 98 r19.29a φ r Base Q s Base Q J r Q s = J r H J s
100 99 anasss φ r Base Q s Base Q J r Q s = J r H J s
101 1 29 3 4 5 ghmquskerlem3 φ J Q GrpHom H
102 7 8 9 10 11 25 27 38 100 101 isrhm2d φ J Q RingHom H