Metamath Proof Explorer


Theorem rhmqusnsg

Description: The mapping J induced by a ring homomorphism F from a subring N of the quotient group Q over F 's kernel K is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses rhmqusnsg.0 0 ˙ = 0 H
rhmqusnsg.f φ F G RingHom H
rhmqusnsg.k K = F -1 0 ˙
rhmqusnsg.q Q = G / 𝑠 G ~ QG N
rhmqusnsg.j J = q Base Q F q
rhmqusnsg.g φ G CRing
rhmqusnsg.n φ N K
rhmqusnsg.1 φ N LIdeal G
Assertion rhmqusnsg φ J Q RingHom H

Proof

Step Hyp Ref Expression
1 rhmqusnsg.0 0 ˙ = 0 H
2 rhmqusnsg.f φ F G RingHom H
3 rhmqusnsg.k K = F -1 0 ˙
4 rhmqusnsg.q Q = G / 𝑠 G ~ QG N
5 rhmqusnsg.j J = q Base Q F q
6 rhmqusnsg.g φ G CRing
7 rhmqusnsg.n φ N K
8 rhmqusnsg.1 φ N LIdeal G
9 eqid Base Q = Base Q
10 eqid 1 Q = 1 Q
11 eqid 1 H = 1 H
12 eqid Q = Q
13 eqid H = H
14 6 crngringd φ G Ring
15 eqid LIdeal G = LIdeal G
16 15 crng2idl G CRing LIdeal G = 2Ideal G
17 6 16 syl φ LIdeal G = 2Ideal G
18 8 17 eleqtrd φ N 2Ideal G
19 eqid 2Ideal G = 2Ideal G
20 eqid 1 G = 1 G
21 4 19 20 qus1 G Ring N 2Ideal G Q Ring 1 G G ~ QG N = 1 Q
22 14 18 21 syl2anc φ Q Ring 1 G G ~ QG N = 1 Q
23 22 simpld φ Q Ring
24 rhmrcl2 F G RingHom H H Ring
25 2 24 syl φ H Ring
26 rhmghm F G RingHom H F G GrpHom H
27 2 26 syl φ F G GrpHom H
28 lidlnsg G Ring N LIdeal G N NrmSGrp G
29 14 8 28 syl2anc φ N NrmSGrp G
30 eqid Base G = Base G
31 30 20 ringidcl G Ring 1 G Base G
32 14 31 syl φ 1 G Base G
33 1 27 3 4 5 7 29 32 ghmqusnsglem1 φ J 1 G G ~ QG N = F 1 G
34 22 simprd φ 1 G G ~ QG N = 1 Q
35 34 fveq2d φ J 1 G G ~ QG N = J 1 Q
36 20 11 rhm1 F G RingHom H F 1 G = 1 H
37 2 36 syl φ F 1 G = 1 H
38 33 35 37 3eqtr3d φ J 1 Q = 1 H
39 2 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y F G RingHom H
40 4 a1i φ Q = G / 𝑠 G ~ QG N
41 eqidd φ Base G = Base G
42 ovexd φ G ~ QG N V
43 40 41 42 6 qusbas φ Base G / G ~ QG N = Base Q
44 nsgsubg N NrmSGrp G N SubGrp G
45 eqid G ~ QG N = G ~ QG N
46 30 45 eqger N SubGrp G G ~ QG N Er Base G
47 29 44 46 3syl φ G ~ QG N Er Base G
48 47 qsss φ Base G / G ~ QG N 𝒫 Base G
49 43 48 eqsstrrd φ Base Q 𝒫 Base G
50 49 sselda φ r Base Q r 𝒫 Base G
51 50 elpwid φ r Base Q r Base G
52 51 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G
53 simp-4r φ r Base Q s Base Q x r J r = F x y s J s = F y x r
54 52 53 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y x Base G
55 49 sselda φ s Base Q s 𝒫 Base G
56 55 elpwid φ s Base Q s Base G
57 56 adantlr φ r Base Q s Base Q s Base G
58 57 ad4antr φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G
59 simplr φ r Base Q s Base Q x r J r = F x y s J s = F y y s
60 58 59 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y y Base G
61 eqid G = G
62 30 61 13 rhmmul F G RingHom H x Base G y Base G F x G y = F x H F y
63 39 54 60 62 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y F x G y = F x H F y
64 47 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G ~ QG N Er Base G
65 simp-6r φ r Base Q s Base Q x r J r = F x y s J s = F y r Base Q
66 43 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y Base G / G ~ QG N = Base Q
67 65 66 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G / G ~ QG N
68 qsel G ~ QG N Er Base G r Base G / G ~ QG N x r r = x G ~ QG N
69 64 67 53 68 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y r = x G ~ QG N
70 simp-5r φ r Base Q s Base Q x r J r = F x y s J s = F y s Base Q
71 70 66 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G / G ~ QG N
72 qsel G ~ QG N Er Base G s Base G / G ~ QG N y s s = y G ~ QG N
73 64 71 59 72 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y s = y G ~ QG N
74 69 73 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y r Q s = x G ~ QG N Q y G ~ QG N
75 6 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G CRing
76 8 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y N LIdeal G
77 4 30 61 12 75 76 54 60 qusmul φ r Base Q s Base Q x r J r = F x y s J s = F y x G ~ QG N Q y G ~ QG N = x G y G ~ QG N
78 74 77 eqtr2d φ r Base Q s Base Q x r J r = F x y s J s = F y x G y G ~ QG N = r Q s
79 78 fveq2d φ r Base Q s Base Q x r J r = F x y s J s = F y J x G y G ~ QG N = J r Q s
80 39 26 syl φ r Base Q s Base Q x r J r = F x y s J s = F y F G GrpHom H
81 7 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y N K
82 29 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y N NrmSGrp G
83 rhmrcl1 F G RingHom H G Ring
84 39 83 syl φ r Base Q s Base Q x r J r = F x y s J s = F y G Ring
85 30 61 84 54 60 ringcld φ r Base Q s Base Q x r J r = F x y s J s = F y x G y Base G
86 1 80 3 4 5 81 82 85 ghmqusnsglem1 φ r Base Q s Base Q x r J r = F x y s J s = F y J x G y G ~ QG N = F x G y
87 79 86 eqtr3d φ r Base Q s Base Q x r J r = F x y s J s = F y J r Q s = F x G y
88 simpllr φ r Base Q s Base Q x r J r = F x y s J s = F y J r = F x
89 simpr φ r Base Q s Base Q x r J r = F x y s J s = F y J s = F y
90 88 89 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y J r H J s = F x H F y
91 63 87 90 3eqtr4d φ r Base Q s Base Q x r J r = F x y s J s = F y J r Q s = J r H J s
92 27 ad4antr φ r Base Q s Base Q x r J r = F x F G GrpHom H
93 7 ad4antr φ r Base Q s Base Q x r J r = F x N K
94 29 ad4antr φ r Base Q s Base Q x r J r = F x N NrmSGrp G
95 simpllr φ r Base Q s Base Q x r J r = F x s Base Q
96 1 92 3 4 5 93 94 95 ghmqusnsglem2 φ r Base Q s Base Q x r J r = F x y s J s = F y
97 91 96 r19.29a φ r Base Q s Base Q x r J r = F x J r Q s = J r H J s
98 27 ad2antrr φ r Base Q s Base Q F G GrpHom H
99 7 ad2antrr φ r Base Q s Base Q N K
100 29 ad2antrr φ r Base Q s Base Q N NrmSGrp G
101 simplr φ r Base Q s Base Q r Base Q
102 1 98 3 4 5 99 100 101 ghmqusnsglem2 φ r Base Q s Base Q x r J r = F x
103 97 102 r19.29a φ r Base Q s Base Q J r Q s = J r H J s
104 103 anasss φ r Base Q s Base Q J r Q s = J r H J s
105 1 27 3 4 5 7 29 ghmqusnsg φ J Q GrpHom H
106 9 10 11 12 13 23 25 38 104 105 isrhm2d φ J Q RingHom H