| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcrngc.c |  | 
						
							| 2 |  | rhmsubcrngc.u |  | 
						
							| 3 |  | rhmsubcrngc.b |  | 
						
							| 4 |  | rhmsubcrngc.h |  | 
						
							| 5 | 3 | eleq2d |  | 
						
							| 6 |  | elin |  | 
						
							| 7 | 6 | simplbi |  | 
						
							| 8 | 5 7 | biimtrdi |  | 
						
							| 9 | 8 | imp |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | idrhm |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 2 | adantr |  | 
						
							| 16 |  | ringrng |  | 
						
							| 17 | 16 | anim2i |  | 
						
							| 18 | 17 | ancoms |  | 
						
							| 19 | 6 18 | sylbi |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | elin |  | 
						
							| 22 | 20 21 | sylibr |  | 
						
							| 23 | 1 13 2 | rngcbas |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 22 24 | eleqtrrd |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 5 26 | sylbid |  | 
						
							| 28 | 27 | imp |  | 
						
							| 29 | 1 13 14 15 28 10 | rngcid |  | 
						
							| 30 | 4 | oveqdr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 31 32 2 33 | ringchomfval |  | 
						
							| 35 | 31 32 2 | ringcbas |  | 
						
							| 36 |  | incom |  | 
						
							| 37 | 3 36 | eqtrdi |  | 
						
							| 38 | 37 | eqcomd |  | 
						
							| 39 | 35 38 | eqtrd |  | 
						
							| 40 | 39 | sqxpeqd |  | 
						
							| 41 | 40 | reseq2d |  | 
						
							| 42 | 34 41 | eqtrd |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 43 | eqcomd |  | 
						
							| 45 | 44 | oveqd |  | 
						
							| 46 | 37 | eleq2d |  | 
						
							| 47 | 46 | biimpa |  | 
						
							| 48 | 35 | adantr |  | 
						
							| 49 | 47 48 | eleqtrrd |  | 
						
							| 50 | 31 32 15 33 49 49 | ringchom |  | 
						
							| 51 | 30 45 50 | 3eqtrd |  | 
						
							| 52 | 12 29 51 | 3eltr4d |  |