| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmsubcrngc.c |
|
| 2 |
|
rhmsubcrngc.u |
|
| 3 |
|
rhmsubcrngc.b |
|
| 4 |
|
rhmsubcrngc.h |
|
| 5 |
3
|
eleq2d |
|
| 6 |
|
elin |
|
| 7 |
6
|
simplbi |
|
| 8 |
5 7
|
biimtrdi |
|
| 9 |
8
|
imp |
|
| 10 |
|
eqid |
|
| 11 |
10
|
idrhm |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
2
|
adantr |
|
| 16 |
|
ringrng |
|
| 17 |
16
|
anim2i |
|
| 18 |
17
|
ancoms |
|
| 19 |
6 18
|
sylbi |
|
| 20 |
19
|
adantl |
|
| 21 |
|
elin |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
1 13 2
|
rngcbas |
|
| 24 |
23
|
adantr |
|
| 25 |
22 24
|
eleqtrrd |
|
| 26 |
25
|
ex |
|
| 27 |
5 26
|
sylbid |
|
| 28 |
27
|
imp |
|
| 29 |
1 13 14 15 28 10
|
rngcid |
|
| 30 |
4
|
oveqdr |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
31 32 2 33
|
ringchomfval |
|
| 35 |
31 32 2
|
ringcbas |
|
| 36 |
|
incom |
|
| 37 |
3 36
|
eqtrdi |
|
| 38 |
37
|
eqcomd |
|
| 39 |
35 38
|
eqtrd |
|
| 40 |
39
|
sqxpeqd |
|
| 41 |
40
|
reseq2d |
|
| 42 |
34 41
|
eqtrd |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
eqcomd |
|
| 45 |
44
|
oveqd |
|
| 46 |
37
|
eleq2d |
|
| 47 |
46
|
biimpa |
|
| 48 |
35
|
adantr |
|
| 49 |
47 48
|
eleqtrrd |
|
| 50 |
31 32 15 33 49 49
|
ringchom |
|
| 51 |
30 45 50
|
3eqtrd |
|
| 52 |
12 29 51
|
3eltr4d |
|