| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmsubcrngc.c |
|
| 2 |
|
rhmsubcrngc.u |
|
| 3 |
|
rhmsubcrngc.b |
|
| 4 |
|
rhmsubcrngc.h |
|
| 5 |
|
simpl |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simpr |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simprr |
|
| 10 |
4
|
rhmresel |
|
| 11 |
6 8 9 10
|
syl3anc |
|
| 12 |
|
simpr |
|
| 13 |
|
simpl |
|
| 14 |
12 13
|
anim12i |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simprl |
|
| 17 |
4
|
rhmresel |
|
| 18 |
6 15 16 17
|
syl3anc |
|
| 19 |
|
rhmco |
|
| 20 |
11 18 19
|
syl2anc |
|
| 21 |
2
|
adantr |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
eqid |
|
| 24 |
3
|
eleq2d |
|
| 25 |
|
elinel2 |
|
| 26 |
24 25
|
biimtrdi |
|
| 27 |
26
|
imp |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
3
|
eleq2d |
|
| 30 |
|
elinel2 |
|
| 31 |
29 30
|
biimtrdi |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
com12 |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
impcom |
|
| 36 |
35
|
adantr |
|
| 37 |
3
|
eleq2d |
|
| 38 |
|
elinel2 |
|
| 39 |
37 38
|
biimtrdi |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
adantld |
|
| 42 |
41
|
imp |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simprl |
|
| 45 |
44
|
adantr |
|
| 46 |
12
|
anim1i |
|
| 47 |
46
|
ancoms |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
45 48 49 17
|
syl3anc |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
51 52
|
rhmf |
|
| 54 |
50 53
|
syl |
|
| 55 |
54
|
exp31 |
|
| 56 |
55
|
adantr |
|
| 57 |
56
|
impcom |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
adantr |
|
| 60 |
59
|
impcom |
|
| 61 |
10
|
3expa |
|
| 62 |
|
eqid |
|
| 63 |
52 62
|
rhmf |
|
| 64 |
61 63
|
syl |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
adantlr |
|
| 67 |
66
|
adantld |
|
| 68 |
67
|
imp |
|
| 69 |
1 22 23 28 36 43 60 68
|
rngcco |
|
| 70 |
4
|
adantr |
|
| 71 |
70
|
oveqdr |
|
| 72 |
|
ovres |
|
| 73 |
72
|
ad2ant2l |
|
| 74 |
71 73
|
eqtrd |
|
| 75 |
74
|
adantr |
|
| 76 |
20 69 75
|
3eltr4d |
|
| 77 |
76
|
ralrimivva |
|
| 78 |
77
|
ralrimivva |
|