Metamath Proof Explorer


Theorem ricqusker

Description: The image H of a ring homomorphism F is isomorphic with the quotient ring Q over F 's kernel K . This a part of what is sometimes called the first isomorphism theorem for rings. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses rhmqusker.1 0 ˙ = 0 H
rhmqusker.f φ F G RingHom H
rhmqusker.k K = F -1 0 ˙
rhmqusker.q Q = G / 𝑠 G ~ QG K
rhmqusker.s φ ran F = Base H
rhmqusker.2 φ G CRing
Assertion ricqusker φ Q 𝑟 H

Proof

Step Hyp Ref Expression
1 rhmqusker.1 0 ˙ = 0 H
2 rhmqusker.f φ F G RingHom H
3 rhmqusker.k K = F -1 0 ˙
4 rhmqusker.q Q = G / 𝑠 G ~ QG K
5 rhmqusker.s φ ran F = Base H
6 rhmqusker.2 φ G CRing
7 imaeq2 p = q F p = F q
8 7 unieqd p = q F p = F q
9 8 cbvmptv p Base Q F p = q Base Q F q
10 1 2 3 4 5 6 9 rhmqusker φ p Base Q F p Q RingIso H
11 brrici p Base Q F p Q RingIso H Q 𝑟 H
12 10 11 syl φ Q 𝑟 H