Metamath Proof Explorer


Theorem rictr

Description: Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025)

Ref Expression
Assertion rictr R 𝑟 S S 𝑟 T R 𝑟 T

Proof

Step Hyp Ref Expression
1 brric R 𝑟 S R RingIso S
2 brric S 𝑟 T S RingIso T
3 n0 R RingIso S f f R RingIso S
4 n0 S RingIso T g g S RingIso T
5 exdistrv f g f R RingIso S g S RingIso T f f R RingIso S g g S RingIso T
6 rimco g S RingIso T f R RingIso S g f R RingIso T
7 brrici g f R RingIso T R 𝑟 T
8 6 7 syl g S RingIso T f R RingIso S R 𝑟 T
9 8 ancoms f R RingIso S g S RingIso T R 𝑟 T
10 9 exlimivv f g f R RingIso S g S RingIso T R 𝑟 T
11 5 10 sylbir f f R RingIso S g g S RingIso T R 𝑟 T
12 3 4 11 syl2anb R RingIso S S RingIso T R 𝑟 T
13 1 2 12 syl2anb R 𝑟 S S 𝑟 T R 𝑟 T