Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
rictr
Next ⟩
riccrng1
Metamath Proof Explorer
Ascii
Unicode
Theorem
rictr
Description:
Ring isomorphism is transitive.
(Contributed by
SN
, 17-Jan-2025)
Ref
Expression
Assertion
rictr
⊢
R
≃
𝑟
S
∧
S
≃
𝑟
T
→
R
≃
𝑟
T
Proof
Step
Hyp
Ref
Expression
1
brric
⊢
R
≃
𝑟
S
↔
R
RingIso
S
≠
∅
2
brric
⊢
S
≃
𝑟
T
↔
S
RingIso
T
≠
∅
3
n0
⊢
R
RingIso
S
≠
∅
↔
∃
f
f
∈
R
RingIso
S
4
n0
⊢
S
RingIso
T
≠
∅
↔
∃
g
g
∈
S
RingIso
T
5
exdistrv
⊢
∃
f
∃
g
f
∈
R
RingIso
S
∧
g
∈
S
RingIso
T
↔
∃
f
f
∈
R
RingIso
S
∧
∃
g
g
∈
S
RingIso
T
6
rimco
⊢
g
∈
S
RingIso
T
∧
f
∈
R
RingIso
S
→
g
∘
f
∈
R
RingIso
T
7
brrici
⊢
g
∘
f
∈
R
RingIso
T
→
R
≃
𝑟
T
8
6
7
syl
⊢
g
∈
S
RingIso
T
∧
f
∈
R
RingIso
S
→
R
≃
𝑟
T
9
8
ancoms
⊢
f
∈
R
RingIso
S
∧
g
∈
S
RingIso
T
→
R
≃
𝑟
T
10
9
exlimivv
⊢
∃
f
∃
g
f
∈
R
RingIso
S
∧
g
∈
S
RingIso
T
→
R
≃
𝑟
T
11
5
10
sylbir
⊢
∃
f
f
∈
R
RingIso
S
∧
∃
g
g
∈
S
RingIso
T
→
R
≃
𝑟
T
12
3
4
11
syl2anb
⊢
R
RingIso
S
≠
∅
∧
S
RingIso
T
≠
∅
→
R
≃
𝑟
T
13
1
2
12
syl2anb
⊢
R
≃
𝑟
S
∧
S
≃
𝑟
T
→
R
≃
𝑟
T