Metamath Proof Explorer


Theorem ridl0

Description: Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses ridl0.u U = LIdeal opp r R
ridl0.z 0 ˙ = 0 R
Assertion ridl0 R Ring 0 ˙ U

Proof

Step Hyp Ref Expression
1 ridl0.u U = LIdeal opp r R
2 ridl0.z 0 ˙ = 0 R
3 eqid opp r R = opp r R
4 3 opprring R Ring opp r R Ring
5 3 2 oppr0 0 ˙ = 0 opp r R
6 1 5 lidl0 opp r R Ring 0 ˙ U
7 4 6 syl R Ring 0 ˙ U