Metamath Proof Explorer


Theorem ridl1

Description: Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses ridl0.u U = LIdeal opp r R
ridl1.b B = Base R
Assertion ridl1 R Ring B U

Proof

Step Hyp Ref Expression
1 ridl0.u U = LIdeal opp r R
2 ridl1.b B = Base R
3 eqid opp r R = opp r R
4 3 opprring R Ring opp r R Ring
5 3 2 opprbas B = Base opp r R
6 1 5 lidl1 opp r R Ring B U
7 4 6 syl R Ring B U