Metamath Proof Explorer


Theorem riesz4

Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. See riesz2 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion riesz4 T LinFn ContFn ∃! w v T v = v ih w

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinFn ContFn T × 0 T v = if T LinFn ContFn T × 0 v
2 1 eqeq1d T = if T LinFn ContFn T × 0 T v = v ih w if T LinFn ContFn T × 0 v = v ih w
3 2 ralbidv T = if T LinFn ContFn T × 0 v T v = v ih w v if T LinFn ContFn T × 0 v = v ih w
4 3 reubidv T = if T LinFn ContFn T × 0 ∃! w v T v = v ih w ∃! w v if T LinFn ContFn T × 0 v = v ih w
5 inss1 LinFn ContFn LinFn
6 0lnfn × 0 LinFn
7 0cnfn × 0 ContFn
8 elin × 0 LinFn ContFn × 0 LinFn × 0 ContFn
9 6 7 8 mpbir2an × 0 LinFn ContFn
10 9 elimel if T LinFn ContFn T × 0 LinFn ContFn
11 5 10 sselii if T LinFn ContFn T × 0 LinFn
12 inss2 LinFn ContFn ContFn
13 12 10 sselii if T LinFn ContFn T × 0 ContFn
14 11 13 riesz4i ∃! w v if T LinFn ContFn T × 0 v = v ih w
15 4 14 dedth T LinFn ContFn ∃! w v T v = v ih w