Metamath Proof Explorer


Theorem riesz4i

Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 T LinFn
nlelch.2 T ContFn
Assertion riesz4i ∃! w v T v = v ih w

Proof

Step Hyp Ref Expression
1 nlelch.1 T LinFn
2 nlelch.2 T ContFn
3 1 2 riesz3i w v T v = v ih w
4 r19.26 v T v = v ih w T v = v ih u v T v = v ih w v T v = v ih u
5 oveq12 T v = v ih w T v = v ih u T v T v = v ih w v ih u
6 5 adantl v T v = v ih w T v = v ih u T v T v = v ih w v ih u
7 1 lnfnfi T :
8 7 ffvelrni v T v
9 8 subidd v T v T v = 0
10 9 adantr v T v = v ih w T v = v ih u T v T v = 0
11 6 10 eqtr3d v T v = v ih w T v = v ih u v ih w v ih u = 0
12 11 ralimiaa v T v = v ih w T v = v ih u v v ih w v ih u = 0
13 4 12 sylbir v T v = v ih w v T v = v ih u v v ih w v ih u = 0
14 hvsubcl w u w - u
15 oveq1 v = w - u v ih w = w - u ih w
16 oveq1 v = w - u v ih u = w - u ih u
17 15 16 oveq12d v = w - u v ih w v ih u = w - u ih w w - u ih u
18 17 eqeq1d v = w - u v ih w v ih u = 0 w - u ih w w - u ih u = 0
19 18 rspcv w - u v v ih w v ih u = 0 w - u ih w w - u ih u = 0
20 14 19 syl w u v v ih w v ih u = 0 w - u ih w w - u ih u = 0
21 normcl w - u norm w - u
22 21 recnd w - u norm w - u
23 sqeq0 norm w - u norm w - u 2 = 0 norm w - u = 0
24 22 23 syl w - u norm w - u 2 = 0 norm w - u = 0
25 norm-i w - u norm w - u = 0 w - u = 0
26 24 25 bitrd w - u norm w - u 2 = 0 w - u = 0
27 14 26 syl w u norm w - u 2 = 0 w - u = 0
28 normsq w - u norm w - u 2 = w - u ih w - u
29 14 28 syl w u norm w - u 2 = w - u ih w - u
30 simpl w u w
31 simpr w u u
32 his2sub2 w - u w u w - u ih w - u = w - u ih w w - u ih u
33 14 30 31 32 syl3anc w u w - u ih w - u = w - u ih w w - u ih u
34 29 33 eqtrd w u norm w - u 2 = w - u ih w w - u ih u
35 34 eqeq1d w u norm w - u 2 = 0 w - u ih w w - u ih u = 0
36 hvsubeq0 w u w - u = 0 w = u
37 27 35 36 3bitr3d w u w - u ih w w - u ih u = 0 w = u
38 20 37 sylibd w u v v ih w v ih u = 0 w = u
39 13 38 syl5 w u v T v = v ih w v T v = v ih u w = u
40 39 rgen2 w u v T v = v ih w v T v = v ih u w = u
41 oveq2 w = u v ih w = v ih u
42 41 eqeq2d w = u T v = v ih w T v = v ih u
43 42 ralbidv w = u v T v = v ih w v T v = v ih u
44 43 reu4 ∃! w v T v = v ih w w v T v = v ih w w u v T v = v ih w v T v = v ih u w = u
45 3 40 44 mpbir2an ∃! w v T v = v ih w