Step |
Hyp |
Ref |
Expression |
1 |
|
nlelch.1 |
|
2 |
|
nlelch.2 |
|
3 |
1 2
|
riesz3i |
|
4 |
|
r19.26 |
|
5 |
|
oveq12 |
|
6 |
5
|
adantl |
|
7 |
1
|
lnfnfi |
|
8 |
7
|
ffvelrni |
|
9 |
8
|
subidd |
|
10 |
9
|
adantr |
|
11 |
6 10
|
eqtr3d |
|
12 |
11
|
ralimiaa |
|
13 |
4 12
|
sylbir |
|
14 |
|
hvsubcl |
|
15 |
|
oveq1 |
|
16 |
|
oveq1 |
|
17 |
15 16
|
oveq12d |
|
18 |
17
|
eqeq1d |
|
19 |
18
|
rspcv |
|
20 |
14 19
|
syl |
|
21 |
|
normcl |
|
22 |
21
|
recnd |
|
23 |
|
sqeq0 |
|
24 |
22 23
|
syl |
|
25 |
|
norm-i |
|
26 |
24 25
|
bitrd |
|
27 |
14 26
|
syl |
|
28 |
|
normsq |
|
29 |
14 28
|
syl |
|
30 |
|
simpl |
|
31 |
|
simpr |
|
32 |
|
his2sub2 |
|
33 |
14 30 31 32
|
syl3anc |
|
34 |
29 33
|
eqtrd |
|
35 |
34
|
eqeq1d |
|
36 |
|
hvsubeq0 |
|
37 |
27 35 36
|
3bitr3d |
|
38 |
20 37
|
sylibd |
|
39 |
13 38
|
syl5 |
|
40 |
39
|
rgen2 |
|
41 |
|
oveq2 |
|
42 |
41
|
eqeq2d |
|
43 |
42
|
ralbidv |
|
44 |
43
|
reu4 |
|
45 |
3 40 44
|
mpbir2an |
|