Database
SURREAL NUMBERS
Conway cut representation
Cuts and Options
right1s
Next ⟩
lrold
Metamath Proof Explorer
Ascii
Unicode
Theorem
right1s
Description:
The right set of
1s
is empty .
(Contributed by
Scott Fenton
, 4-Feb-2025)
Ref
Expression
Assertion
right1s
⊢
R
⁡
1
s
=
∅
Proof
Step
Hyp
Ref
Expression
1
rightval
⊢
R
⁡
1
s
=
x
∈
Old
⁡
bday
⁡
1
s
|
1
s
<
s
x
2
bday1s
⊢
bday
⁡
1
s
=
1
𝑜
3
2
fveq2i
⊢
Old
⁡
bday
⁡
1
s
=
Old
⁡
1
𝑜
4
old1
⊢
Old
⁡
1
𝑜
=
0
s
5
3
4
eqtri
⊢
Old
⁡
bday
⁡
1
s
=
0
s
6
5
rabeqi
⊢
x
∈
Old
⁡
bday
⁡
1
s
|
1
s
<
s
x
=
x
∈
0
s
|
1
s
<
s
x
7
breq2
⊢
x
=
0
s
→
1
s
<
s
x
↔
1
s
<
s
0
s
8
7
rabsnif
⊢
x
∈
0
s
|
1
s
<
s
x
=
if
1
s
<
s
0
s
0
s
∅
9
6
8
eqtri
⊢
x
∈
Old
⁡
bday
⁡
1
s
|
1
s
<
s
x
=
if
1
s
<
s
0
s
0
s
∅
10
0slt1s
⊢
0
s
<
s
1
s
11
0sno
⊢
0
s
∈
No
12
1sno
⊢
1
s
∈
No
13
sltasym
⊢
0
s
∈
No
∧
1
s
∈
No
→
0
s
<
s
1
s
→
¬
1
s
<
s
0
s
14
11
12
13
mp2an
⊢
0
s
<
s
1
s
→
¬
1
s
<
s
0
s
15
10
14
ax-mp
⊢
¬
1
s
<
s
0
s
16
15
iffalsei
⊢
if
1
s
<
s
0
s
0
s
∅
=
∅
17
1
9
16
3eqtri
⊢
R
⁡
1
s
=
∅