Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
riin0
Next ⟩
riinn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
riin0
Description:
Relative intersection of an empty family.
(Contributed by
Stefan O'Rear
, 3-Apr-2015)
Ref
Expression
Assertion
riin0
⊢
X
=
∅
→
A
∩
⋂
x
∈
X
S
=
A
Proof
Step
Hyp
Ref
Expression
1
iineq1
⊢
X
=
∅
→
⋂
x
∈
X
S
=
⋂
x
∈
∅
S
2
1
ineq2d
⊢
X
=
∅
→
A
∩
⋂
x
∈
X
S
=
A
∩
⋂
x
∈
∅
S
3
0iin
⊢
⋂
x
∈
∅
S
=
V
4
3
ineq2i
⊢
A
∩
⋂
x
∈
∅
S
=
A
∩
V
5
inv1
⊢
A
∩
V
=
A
6
4
5
eqtri
⊢
A
∩
⋂
x
∈
∅
S
=
A
7
2
6
eqtrdi
⊢
X
=
∅
→
A
∩
⋂
x
∈
X
S
=
A