Metamath Proof Explorer


Theorem riincld

Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis clscld.1 X=J
Assertion riincld JTopxABClsdJXxABClsdJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 riin0 A=XxAB=X
3 2 adantl JTopxABClsdJA=XxAB=X
4 1 topcld JTopXClsdJ
5 4 ad2antrr JTopxABClsdJA=XClsdJ
6 3 5 eqeltrd JTopxABClsdJA=XxABClsdJ
7 4 ad2antrr JTopxABClsdJAXClsdJ
8 simpr JTopxABClsdJAA
9 simplr JTopxABClsdJAxABClsdJ
10 iincld AxABClsdJxABClsdJ
11 8 9 10 syl2anc JTopxABClsdJAxABClsdJ
12 incld XClsdJxABClsdJXxABClsdJ
13 7 11 12 syl2anc JTopxABClsdJAXxABClsdJ
14 6 13 pm2.61dane JTopxABClsdJXxABClsdJ