Metamath Proof Explorer


Theorem riincld

Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis clscld.1 X = J
Assertion riincld J Top x A B Clsd J X x A B Clsd J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 riin0 A = X x A B = X
3 2 adantl J Top x A B Clsd J A = X x A B = X
4 1 topcld J Top X Clsd J
5 4 ad2antrr J Top x A B Clsd J A = X Clsd J
6 3 5 eqeltrd J Top x A B Clsd J A = X x A B Clsd J
7 4 ad2antrr J Top x A B Clsd J A X Clsd J
8 simpr J Top x A B Clsd J A A
9 simplr J Top x A B Clsd J A x A B Clsd J
10 iincld A x A B Clsd J x A B Clsd J
11 8 9 10 syl2anc J Top x A B Clsd J A x A B Clsd J
12 incld X Clsd J x A B Clsd J X x A B Clsd J
13 7 11 12 syl2anc J Top x A B Clsd J A X x A B Clsd J
14 6 13 pm2.61dane J Top x A B Clsd J X x A B Clsd J