Metamath Proof Explorer


Theorem riinint

Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion riinint X V k I S X X k I S = X ran k I S

Proof

Step Hyp Ref Expression
1 ssexg S X X V S V
2 1 expcom X V S X S V
3 2 ralimdv X V k I S X k I S V
4 3 imp X V k I S X k I S V
5 dfiin3g k I S V k I S = ran k I S
6 4 5 syl X V k I S X k I S = ran k I S
7 6 ineq2d X V k I S X X k I S = X ran k I S
8 intun X ran k I S = X ran k I S
9 intsng X V X = X
10 9 adantr X V k I S X X = X
11 10 ineq1d X V k I S X X ran k I S = X ran k I S
12 8 11 eqtrid X V k I S X X ran k I S = X ran k I S
13 7 12 eqtr4d X V k I S X X k I S = X ran k I S