Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
riinn0
Next ⟩
riinrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
riinn0
Description:
Relative intersection of a nonempty family.
(Contributed by
Stefan O'Rear
, 3-Apr-2015)
Ref
Expression
Assertion
riinn0
⊢
∀
x
∈
X
S
⊆
A
∧
X
≠
∅
→
A
∩
⋂
x
∈
X
S
=
⋂
x
∈
X
S
Proof
Step
Hyp
Ref
Expression
1
incom
⊢
A
∩
⋂
x
∈
X
S
=
⋂
x
∈
X
S
∩
A
2
r19.2z
⊢
X
≠
∅
∧
∀
x
∈
X
S
⊆
A
→
∃
x
∈
X
S
⊆
A
3
2
ancoms
⊢
∀
x
∈
X
S
⊆
A
∧
X
≠
∅
→
∃
x
∈
X
S
⊆
A
4
iinss
⊢
∃
x
∈
X
S
⊆
A
→
⋂
x
∈
X
S
⊆
A
5
3
4
syl
⊢
∀
x
∈
X
S
⊆
A
∧
X
≠
∅
→
⋂
x
∈
X
S
⊆
A
6
df-ss
⊢
⋂
x
∈
X
S
⊆
A
↔
⋂
x
∈
X
S
∩
A
=
⋂
x
∈
X
S
7
5
6
sylib
⊢
∀
x
∈
X
S
⊆
A
∧
X
≠
∅
→
⋂
x
∈
X
S
∩
A
=
⋂
x
∈
X
S
8
1
7
eqtrid
⊢
∀
x
∈
X
S
⊆
A
∧
X
≠
∅
→
A
∩
⋂
x
∈
X
S
=
⋂
x
∈
X
S