Metamath Proof Explorer


Theorem riinn0

Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion riinn0 x X S A X A x X S = x X S

Proof

Step Hyp Ref Expression
1 incom A x X S = x X S A
2 r19.2z X x X S A x X S A
3 2 ancoms x X S A X x X S A
4 iinss x X S A x X S A
5 3 4 syl x X S A X x X S A
6 df-ss x X S A x X S A = x X S
7 5 6 sylib x X S A X x X S A = x X S
8 1 7 eqtrid x X S A X A x X S = x X S