Metamath Proof Explorer


Theorem riinopn

Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis 1open.1 X = J
Assertion riinopn J Top A Fin x A B J X x A B J

Proof

Step Hyp Ref Expression
1 1open.1 X = J
2 riin0 A = X x A B = X
3 2 adantl J Top A Fin x A B J A = X x A B = X
4 simpl1 J Top A Fin x A B J A = J Top
5 1 topopn J Top X J
6 4 5 syl J Top A Fin x A B J A = X J
7 3 6 eqeltrd J Top A Fin x A B J A = X x A B J
8 1 eltopss J Top B J B X
9 8 ex J Top B J B X
10 9 adantr J Top A Fin B J B X
11 10 ralimdv J Top A Fin x A B J x A B X
12 11 3impia J Top A Fin x A B J x A B X
13 riinn0 x A B X A X x A B = x A B
14 12 13 sylan J Top A Fin x A B J A X x A B = x A B
15 iinopn J Top A Fin A x A B J x A B J
16 15 3exp2 J Top A Fin A x A B J x A B J
17 16 com34 J Top A Fin x A B J A x A B J
18 17 3imp1 J Top A Fin x A B J A x A B J
19 14 18 eqeltrd J Top A Fin x A B J A X x A B J
20 7 19 pm2.61dane J Top A Fin x A B J X x A B J