Description: An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmf1o.b | ||
rhmf1o.c | |||
Assertion | rimf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmf1o.b | ||
2 | rhmf1o.c | ||
3 | rimrcl | ||
4 | 1 2 | isrim | |
5 | simpr | ||
6 | 4 5 | syl6bi | |
7 | 3 6 | mpcom |