Metamath Proof Explorer


Theorem rimisrngim

Description: Each unital ring isomorphism is a non-unital ring isomorphism. (Contributed by AV, 30-Mar-2025)

Ref Expression
Assertion rimisrngim F R RingIso S F R RngIso S

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid Base S = Base S
3 1 2 isrim F R RingIso S F R RingHom S F : Base R 1-1 onto Base S
4 rhmisrnghm F R RingHom S F R RngHom S
5 4 anim1i F R RingHom S F : Base R 1-1 onto Base S F R RngHom S F : Base R 1-1 onto Base S
6 3 5 sylbi F R RingIso S F R RngHom S F : Base R 1-1 onto Base S
7 rimrcl F R RingIso S R V S V
8 1 2 isrngim2 R V S V F R RngIso S F R RngHom S F : Base R 1-1 onto Base S
9 7 8 syl F R RingIso S F R RngIso S F R RngHom S F : Base R 1-1 onto Base S
10 6 9 mpbird F R RingIso S F R RngIso S