Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
rimrcl
Next ⟩
rhmghm
Metamath Proof Explorer
Ascii
Unicode
Theorem
rimrcl
Description:
Reverse closure for an isomorphism of rings.
(Contributed by
AV
, 22-Oct-2019)
Ref
Expression
Assertion
rimrcl
⊢
F
∈
R
RingIso
S
→
R
∈
V
∧
S
∈
V
Proof
Step
Hyp
Ref
Expression
1
df-rngiso
⊢
RingIso
=
r
∈
V
,
s
∈
V
⟼
f
∈
r
RingHom
s
|
f
-1
∈
s
RingHom
r
2
1
elmpocl
⊢
F
∈
R
RingIso
S
→
R
∈
V
∧
S
∈
V