Metamath Proof Explorer


Theorem rimrcl

Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019)

Ref Expression
Assertion rimrcl F R RingIso S R V S V

Proof

Step Hyp Ref Expression
1 df-rngiso RingIso = r V , s V f r RingHom s | f -1 s RingHom r
2 1 elmpocl F R RingIso S R V S V