Metamath Proof Explorer


Theorem rimrhm

Description: An isomorphism of rings is a homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses rhmf1o.b B = Base R
rhmf1o.c C = Base S
Assertion rimrhm F R RingIso S F R RingHom S

Proof

Step Hyp Ref Expression
1 rhmf1o.b B = Base R
2 rhmf1o.c C = Base S
3 rimrcl F R RingIso S R V S V
4 1 2 isrim R V S V F R RingIso S F R RingHom S F : B 1-1 onto C
5 simpl F R RingHom S F : B 1-1 onto C F R RingHom S
6 4 5 syl6bi R V S V F R RingIso S F R RingHom S
7 3 6 mpcom F R RingIso S F R RingHom S