Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
rimrhmOLD
Metamath Proof Explorer
Description: Obsolete version of rimrhm as of 12-Jan-2025. (Contributed by AV , 22-Oct-2019) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
rhmf1o.b
⊢ B = Base R
rhmf1o.c
⊢ C = Base S
Assertion
rimrhmOLD
⊢ F ∈ R RingIso S → F ∈ R RingHom S
Proof
Step
Hyp
Ref
Expression
1
rhmf1o.b
⊢ B = Base R
2
rhmf1o.c
⊢ C = Base S
3
1 2
isrim
⊢ F ∈ R RingIso S ↔ F ∈ R RingHom S ∧ F : B ⟶ 1-1 onto C
4
3
simplbi
⊢ F ∈ R RingIso S → F ∈ R RingHom S