Metamath Proof Explorer


Theorem ring1

Description: The (smallest) structure representing azero ring. (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis ring1.m M = Base ndx Z + ndx Z Z Z ndx Z Z Z
Assertion ring1 Z V M Ring

Proof

Step Hyp Ref Expression
1 ring1.m M = Base ndx Z + ndx Z Z Z ndx Z Z Z
2 eqid Base ndx Z + ndx Z Z Z = Base ndx Z + ndx Z Z Z
3 2 grp1 Z V Base ndx Z + ndx Z Z Z Grp
4 snex Z V
5 1 rngbase Z V Z = Base M
6 4 5 ax-mp Z = Base M
7 6 eqcomi Base M = Z
8 snex Z Z Z V
9 1 rngplusg Z Z Z V Z Z Z = + M
10 9 eqcomd Z Z Z V + M = Z Z Z
11 8 10 ax-mp + M = Z Z Z
12 7 11 2 grppropstr M Grp Base ndx Z + ndx Z Z Z Grp
13 3 12 sylibr Z V M Grp
14 2 mnd1 Z V Base ndx Z + ndx Z Z Z Mnd
15 eqid mulGrp M = mulGrp M
16 15 6 mgpbas Z = Base mulGrp M
17 2 grpbase Z V Z = Base Base ndx Z + ndx Z Z Z
18 4 17 ax-mp Z = Base Base ndx Z + ndx Z Z Z
19 16 18 eqtr3i Base mulGrp M = Base Base ndx Z + ndx Z Z Z
20 1 rngmulr Z Z Z V Z Z Z = M
21 8 20 ax-mp Z Z Z = M
22 2 grpplusg Z Z Z V Z Z Z = + Base ndx Z + ndx Z Z Z
23 8 22 ax-mp Z Z Z = + Base ndx Z + ndx Z Z Z
24 eqid M = M
25 15 24 mgpplusg M = + mulGrp M
26 21 23 25 3eqtr3ri + mulGrp M = + Base ndx Z + ndx Z Z Z
27 19 26 mndprop mulGrp M Mnd Base ndx Z + ndx Z Z Z Mnd
28 14 27 sylibr Z V mulGrp M Mnd
29 df-ov Z Z Z Z Z = Z Z Z Z Z
30 opex Z Z V
31 fvsng Z Z V Z V Z Z Z Z Z = Z
32 30 31 mpan Z V Z Z Z Z Z = Z
33 29 32 eqtrid Z V Z Z Z Z Z = Z
34 33 oveq2d Z V Z Z Z Z Z Z Z Z Z = Z Z Z Z Z
35 33 33 oveq12d Z V Z Z Z Z Z Z Z Z Z Z Z Z Z = Z Z Z Z Z
36 34 35 eqtr4d Z V Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
37 33 oveq1d Z V Z Z Z Z Z Z Z Z Z = Z Z Z Z Z
38 37 35 eqtr4d Z V Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
39 oveq1 a = Z a Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z c
40 oveq1 a = Z a Z Z Z b = Z Z Z Z b
41 oveq1 a = Z a Z Z Z c = Z Z Z Z c
42 40 41 oveq12d a = Z a Z Z Z b Z Z Z a Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c
43 39 42 eqeq12d a = Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c
44 40 oveq1d a = Z a Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z c
45 41 oveq1d a = Z a Z Z Z c Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c
46 44 45 eqeq12d a = Z a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c
47 43 46 anbi12d a = Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c
48 47 2ralbidv a = Z b Z c Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c b Z c Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c
49 48 ralsng Z V a Z b Z c Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c b Z c Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c
50 oveq1 b = Z b Z Z Z c = Z Z Z Z c
51 50 oveq2d b = Z Z Z Z Z b Z Z Z c = Z Z Z Z Z Z Z Z c
52 oveq2 b = Z Z Z Z Z b = Z Z Z Z Z
53 52 oveq1d b = Z Z Z Z Z b Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c
54 51 53 eqeq12d b = Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c
55 52 oveq1d b = Z Z Z Z Z b Z Z Z c = Z Z Z Z Z Z Z Z c
56 50 oveq2d b = Z Z Z Z Z c Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c
57 55 56 eqeq12d b = Z Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c
58 54 57 anbi12d b = Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c
59 58 ralbidv b = Z c Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c c Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c
60 59 ralsng Z V b Z c Z Z Z Z Z b Z Z Z c = Z Z Z Z b Z Z Z Z Z Z Z c Z Z Z Z b Z Z Z c = Z Z Z Z c Z Z Z b Z Z Z c c Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c
61 oveq2 c = Z Z Z Z Z c = Z Z Z Z Z
62 61 oveq2d c = Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z
63 61 oveq2d c = Z Z Z Z Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z Z
64 62 63 eqeq12d c = Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
65 oveq2 c = Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z
66 61 61 oveq12d c = Z Z Z Z Z c Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z Z
67 65 66 eqeq12d c = Z Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
68 64 67 anbi12d c = Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
69 68 ralsng Z V c Z Z Z Z Z Z Z Z Z c = Z Z Z Z Z Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z c = Z Z Z Z c Z Z Z Z Z Z Z c Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
70 49 60 69 3bitrd Z V a Z b Z c Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z = Z Z Z Z Z Z Z Z Z Z Z Z Z
71 36 38 70 mpbir2and Z V a Z b Z c Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c
72 8 9 ax-mp Z Z Z = + M
73 6 15 72 21 isring M Ring M Grp mulGrp M Mnd a Z b Z c Z a Z Z Z b Z Z Z c = a Z Z Z b Z Z Z a Z Z Z c a Z Z Z b Z Z Z c = a Z Z Z c Z Z Z b Z Z Z c
74 13 28 71 73 syl3anbrc Z V M Ring