Metamath Proof Explorer


Theorem ring1eq0

Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element { 0 } . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses ring1eq0.b B = Base R
ring1eq0.u 1 ˙ = 1 R
ring1eq0.z 0 ˙ = 0 R
Assertion ring1eq0 R Ring X B Y B 1 ˙ = 0 ˙ X = Y

Proof

Step Hyp Ref Expression
1 ring1eq0.b B = Base R
2 ring1eq0.u 1 ˙ = 1 R
3 ring1eq0.z 0 ˙ = 0 R
4 simpr R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ = 0 ˙
5 4 oveq1d R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R X = 0 ˙ R X
6 4 oveq1d R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R Y = 0 ˙ R Y
7 simpl1 R Ring X B Y B 1 ˙ = 0 ˙ R Ring
8 simpl2 R Ring X B Y B 1 ˙ = 0 ˙ X B
9 eqid R = R
10 1 9 3 ringlz R Ring X B 0 ˙ R X = 0 ˙
11 7 8 10 syl2anc R Ring X B Y B 1 ˙ = 0 ˙ 0 ˙ R X = 0 ˙
12 simpl3 R Ring X B Y B 1 ˙ = 0 ˙ Y B
13 1 9 3 ringlz R Ring Y B 0 ˙ R Y = 0 ˙
14 7 12 13 syl2anc R Ring X B Y B 1 ˙ = 0 ˙ 0 ˙ R Y = 0 ˙
15 11 14 eqtr4d R Ring X B Y B 1 ˙ = 0 ˙ 0 ˙ R X = 0 ˙ R Y
16 6 15 eqtr4d R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R Y = 0 ˙ R X
17 5 16 eqtr4d R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R X = 1 ˙ R Y
18 1 9 2 ringlidm R Ring X B 1 ˙ R X = X
19 7 8 18 syl2anc R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R X = X
20 1 9 2 ringlidm R Ring Y B 1 ˙ R Y = Y
21 7 12 20 syl2anc R Ring X B Y B 1 ˙ = 0 ˙ 1 ˙ R Y = Y
22 17 19 21 3eqtr3d R Ring X B Y B 1 ˙ = 0 ˙ X = Y
23 22 ex R Ring X B Y B 1 ˙ = 0 ˙ X = Y