Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringunitnzdiv.b | ||
ringunitnzdiv.z | |||
ringunitnzdiv.t | |||
ringunitnzdiv.r | |||
ringunitnzdiv.y | |||
ring1nzdiv.x | |||
Assertion | ring1nzdiv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringunitnzdiv.b | ||
2 | ringunitnzdiv.z | ||
3 | ringunitnzdiv.t | ||
4 | ringunitnzdiv.r | ||
5 | ringunitnzdiv.y | ||
6 | ring1nzdiv.x | ||
7 | eqid | ||
8 | 7 6 | 1unit | |
9 | 4 8 | syl | |
10 | 1 2 3 4 5 9 | ringunitnzdiv |