Metamath Proof Explorer


Theorem ring1nzdiv

Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b B = Base R
ringunitnzdiv.z 0 ˙ = 0 R
ringunitnzdiv.t · ˙ = R
ringunitnzdiv.r φ R Ring
ringunitnzdiv.y φ Y B
ring1nzdiv.x 1 ˙ = 1 R
Assertion ring1nzdiv φ 1 ˙ · ˙ Y = 0 ˙ Y = 0 ˙

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b B = Base R
2 ringunitnzdiv.z 0 ˙ = 0 R
3 ringunitnzdiv.t · ˙ = R
4 ringunitnzdiv.r φ R Ring
5 ringunitnzdiv.y φ Y B
6 ring1nzdiv.x 1 ˙ = 1 R
7 eqid Unit R = Unit R
8 7 6 1unit R Ring 1 ˙ Unit R
9 4 8 syl φ 1 ˙ Unit R
10 1 2 3 4 5 9 ringunitnzdiv φ 1 ˙ · ˙ Y = 0 ˙ Y = 0 ˙