Metamath Proof Explorer


Theorem ringadd2

Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021) (Proof shortened by AV, 1-Feb-2025)

Ref Expression
Hypotheses ringadd2.b B = Base R
ringadd2.p + ˙ = + R
ringadd2.t · ˙ = R
Assertion ringadd2 R Ring X B x B X + ˙ X = x + ˙ x · ˙ X

Proof

Step Hyp Ref Expression
1 ringadd2.b B = Base R
2 ringadd2.p + ˙ = + R
3 ringadd2.t · ˙ = R
4 eqid 1 R = 1 R
5 1 4 ringidcl R Ring 1 R B
6 5 adantr R Ring X B 1 R B
7 simpr R Ring X B x = 1 R x = 1 R
8 7 7 oveq12d R Ring X B x = 1 R x + ˙ x = 1 R + ˙ 1 R
9 8 oveq1d R Ring X B x = 1 R x + ˙ x · ˙ X = 1 R + ˙ 1 R · ˙ X
10 9 eqeq2d R Ring X B x = 1 R X + ˙ X = x + ˙ x · ˙ X X + ˙ X = 1 R + ˙ 1 R · ˙ X
11 1 2 3 4 ringo2times R Ring X B X + ˙ X = 1 R + ˙ 1 R · ˙ X
12 6 10 11 rspcedvd R Ring X B x B X + ˙ X = x + ˙ x · ˙ X