Metamath Proof Explorer


Theorem ringcomlem

Description: Lemma for ringcom . This (formerly) part of the proof for ringcom is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem . (Contributed by Gérard Lang, 4-Dec-2014) Variant of rglcom4d for rings. (Revised by AV, 5-Feb-2025)

Ref Expression
Hypotheses ringacl.b B = Base R
ringacl.p + ˙ = + R
Assertion ringcomlem R Ring X B Y B X + ˙ X + ˙ Y + ˙ Y = X + ˙ Y + ˙ X + ˙ Y

Proof

Step Hyp Ref Expression
1 ringacl.b B = Base R
2 ringacl.p + ˙ = + R
3 eqid R = R
4 1 2 3 ringdir R Ring x B y B z B x + ˙ y R z = x R z + ˙ y R z
5 4 ralrimivvva R Ring x B y B z B x + ˙ y R z = x R z + ˙ y R z
6 5 3ad2ant1 R Ring X B Y B x B y B z B x + ˙ y R z = x R z + ˙ y R z
7 eqid 1 R = 1 R
8 1 7 ringidcl R Ring 1 R B
9 8 3ad2ant1 R Ring X B Y B 1 R B
10 1 3 7 ringlidm R Ring x B 1 R R x = x
11 10 ralrimiva R Ring x B 1 R R x = x
12 11 3ad2ant1 R Ring X B Y B x B 1 R R x = x
13 simp2 R Ring X B Y B X B
14 1 2 ringacl R Ring x B y B x + ˙ y B
15 14 3expb R Ring x B y B x + ˙ y B
16 15 ralrimivva R Ring x B y B x + ˙ y B
17 16 3ad2ant1 R Ring X B Y B x B y B x + ˙ y B
18 1 2 3 ringdi R Ring x B y B z B x R y + ˙ z = x R y + ˙ x R z
19 18 ralrimivvva R Ring x B y B z B x R y + ˙ z = x R y + ˙ x R z
20 19 3ad2ant1 R Ring X B Y B x B y B z B x R y + ˙ z = x R y + ˙ x R z
21 simp3 R Ring X B Y B Y B
22 6 9 12 13 17 20 21 rglcom4d R Ring X B Y B X + ˙ X + ˙ Y + ˙ Y = X + ˙ Y + ˙ X + ˙ Y