Metamath Proof Explorer


Theorem ringdird

Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses ringdid.b B = Base R
ringdid.p + ˙ = + R
ringdid.m · ˙ = R
ringdid.r φ R Ring
ringdid.x φ X B
ringdid.y φ Y B
ringdid.z φ Z B
Assertion ringdird φ X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z

Proof

Step Hyp Ref Expression
1 ringdid.b B = Base R
2 ringdid.p + ˙ = + R
3 ringdid.m · ˙ = R
4 ringdid.r φ R Ring
5 ringdid.x φ X B
6 ringdid.y φ Y B
7 ringdid.z φ Z B
8 1 2 3 ringdir R Ring X B Y B Z B X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z
9 4 5 6 7 8 syl13anc φ X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z