Metamath Proof Explorer


Theorem ringelnzr

Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypotheses ringelnzr.z 0 ˙ = 0 R
ringelnzr.b B = Base R
Assertion ringelnzr R Ring X B 0 ˙ R NzRing

Proof

Step Hyp Ref Expression
1 ringelnzr.z 0 ˙ = 0 R
2 ringelnzr.b B = Base R
3 simpl R Ring X B 0 ˙ R Ring
4 eldifsni X B 0 ˙ X 0 ˙
5 4 adantl R Ring X B 0 ˙ X 0 ˙
6 eldifi X B 0 ˙ X B
7 6 adantl R Ring X B 0 ˙ X B
8 2 1 ring0cl R Ring 0 ˙ B
9 8 adantr R Ring X B 0 ˙ 0 ˙ B
10 eqid 1 R = 1 R
11 2 10 1 ring1eq0 R Ring X B 0 ˙ B 1 R = 0 ˙ X = 0 ˙
12 3 7 9 11 syl3anc R Ring X B 0 ˙ 1 R = 0 ˙ X = 0 ˙
13 12 necon3d R Ring X B 0 ˙ X 0 ˙ 1 R 0 ˙
14 5 13 mpd R Ring X B 0 ˙ 1 R 0 ˙
15 10 1 isnzr R NzRing R Ring 1 R 0 ˙
16 3 14 15 sylanbrc R Ring X B 0 ˙ R NzRing