Database
BASIC ALGEBRAIC STRUCTURES
Rings
Definition and basic properties of unital rings
ringgrpd
Next ⟩
ringmnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ringgrpd
Description:
A ring is a group.
(Contributed by
SN
, 16-May-2024)
Ref
Expression
Hypothesis
ringgrpd.1
⊢
φ
→
R
∈
Ring
Assertion
ringgrpd
⊢
φ
→
R
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
ringgrpd.1
⊢
φ
→
R
∈
Ring
2
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
3
1
2
syl
⊢
φ
→
R
∈
Grp