Metamath Proof Explorer


Theorem ringid

Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringid.b B = Base R
ringid.t · ˙ = R
Assertion ringid R Ring X B u B u · ˙ X = X X · ˙ u = X

Proof

Step Hyp Ref Expression
1 ringid.b B = Base R
2 ringid.t · ˙ = R
3 eqid 1 R = 1 R
4 1 3 ringidcl R Ring 1 R B
5 4 adantr R Ring X B 1 R B
6 oveq1 u = 1 R u · ˙ X = 1 R · ˙ X
7 6 eqeq1d u = 1 R u · ˙ X = X 1 R · ˙ X = X
8 oveq2 u = 1 R X · ˙ u = X · ˙ 1 R
9 8 eqeq1d u = 1 R X · ˙ u = X X · ˙ 1 R = X
10 7 9 anbi12d u = 1 R u · ˙ X = X X · ˙ u = X 1 R · ˙ X = X X · ˙ 1 R = X
11 10 adantl R Ring X B u = 1 R u · ˙ X = X X · ˙ u = X 1 R · ˙ X = X X · ˙ 1 R = X
12 1 2 3 ringidmlem R Ring X B 1 R · ˙ X = X X · ˙ 1 R = X
13 5 11 12 rspcedvd R Ring X B u B u · ˙ X = X X · ˙ u = X