Description: Lemma for ringlidm and ringridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngidm.b | ||
rngidm.t | |||
rngidm.u | |||
Assertion | ringidmlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidm.b | ||
2 | rngidm.t | ||
3 | rngidm.u | ||
4 | eqid | ||
5 | 4 | ringmgp | |
6 | 4 1 | mgpbas | |
7 | 4 2 | mgpplusg | |
8 | 4 3 | ringidval | |
9 | 6 7 8 | mndlrid | |
10 | 5 9 | sylan |