Description: Lemma for ringlidm and ringridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidm.b | ||
| ringidm.t | |||
| ringidm.u | |||
| Assertion | ringidmlem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidm.b | ||
| 2 | ringidm.t | ||
| 3 | ringidm.u | ||
| 4 | eqid | ||
| 5 | 4 | ringmgp | |
| 6 | 4 1 | mgpbas | |
| 7 | 4 2 | mgpplusg | |
| 8 | 4 3 | ringidval | |
| 9 | 6 7 8 | mndlrid | |
| 10 | 5 9 | sylan |