Metamath Proof Explorer


Theorem ringidval

Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ringidval.g G = mulGrp R
ringidval.u 1 ˙ = 1 R
Assertion ringidval 1 ˙ = 0 G

Proof

Step Hyp Ref Expression
1 ringidval.g G = mulGrp R
2 ringidval.u 1 ˙ = 1 R
3 df-ur 1 r = 0 𝑔 mulGrp
4 3 fveq1i 1 R = 0 𝑔 mulGrp R
5 fnmgp mulGrp Fn V
6 fvco2 mulGrp Fn V R V 0 𝑔 mulGrp R = 0 mulGrp R
7 5 6 mpan R V 0 𝑔 mulGrp R = 0 mulGrp R
8 4 7 eqtrid R V 1 R = 0 mulGrp R
9 0g0 = 0
10 fvprc ¬ R V 1 R =
11 fvprc ¬ R V mulGrp R =
12 11 fveq2d ¬ R V 0 mulGrp R = 0
13 9 10 12 3eqtr4a ¬ R V 1 R = 0 mulGrp R
14 8 13 pm2.61i 1 R = 0 mulGrp R
15 1 fveq2i 0 G = 0 mulGrp R
16 14 2 15 3eqtr4i 1 ˙ = 0 G