Metamath Proof Explorer


Theorem ringinvcl

Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 U = Unit R
unitinvcl.2 I = inv r R
ringinvcl.3 B = Base R
Assertion ringinvcl R Ring X U I X B

Proof

Step Hyp Ref Expression
1 unitinvcl.1 U = Unit R
2 unitinvcl.2 I = inv r R
3 ringinvcl.3 B = Base R
4 1 2 unitinvcl R Ring X U I X U
5 3 1 unitcl I X U I X B
6 4 5 syl R Ring X U I X B