Metamath Proof Explorer


Theorem ringinvdv

Description: Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringinvdv.b B = Base R
ringinvdv.u U = Unit R
ringinvdv.d × ˙ = / r R
ringinvdv.o 1 ˙ = 1 R
ringinvdv.i I = inv r R
Assertion ringinvdv R Ring X U I X = 1 ˙ × ˙ X

Proof

Step Hyp Ref Expression
1 ringinvdv.b B = Base R
2 ringinvdv.u U = Unit R
3 ringinvdv.d × ˙ = / r R
4 ringinvdv.o 1 ˙ = 1 R
5 ringinvdv.i I = inv r R
6 1 4 ringidcl R Ring 1 ˙ B
7 eqid R = R
8 1 7 2 5 3 dvrval 1 ˙ B X U 1 ˙ × ˙ X = 1 ˙ R I X
9 6 8 sylan R Ring X U 1 ˙ × ˙ X = 1 ˙ R I X
10 2 5 1 ringinvcl R Ring X U I X B
11 1 7 4 ringlidm R Ring I X B 1 ˙ R I X = I X
12 10 11 syldan R Ring X U 1 ˙ R I X = I X
13 9 12 eqtr2d R Ring X U I X = 1 ˙ × ˙ X