| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringinvnzdiv.b |  | 
						
							| 2 |  | ringinvnzdiv.t |  | 
						
							| 3 |  | ringinvnzdiv.u |  | 
						
							| 4 |  | ringinvnzdiv.z |  | 
						
							| 5 |  | ringinvnzdiv.r |  | 
						
							| 6 |  | ringinvnzdiv.x |  | 
						
							| 7 |  | ringinvnzdiv.a |  | 
						
							| 8 |  | ringinvnzdiv.y |  | 
						
							| 9 | 1 2 3 | ringlidm |  | 
						
							| 10 | 5 8 9 | syl2anc |  | 
						
							| 11 | 10 | eqcomd |  | 
						
							| 12 | 11 | ad3antrrr |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 | 13 | eqcoms |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 5 | adantr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 6 | adantr |  | 
						
							| 19 | 8 | adantr |  | 
						
							| 20 | 17 18 19 | 3jca |  | 
						
							| 21 | 16 20 | jca |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 1 2 | ringass |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 15 24 | eqtrd |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 1 2 4 | ringrz |  | 
						
							| 29 | 5 28 | sylan |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 27 30 | sylan9eqr |  | 
						
							| 32 | 12 26 31 | 3eqtrd |  | 
						
							| 33 | 32 | exp31 |  | 
						
							| 34 | 33 | rexlimdva |  | 
						
							| 35 | 7 34 | mpd |  | 
						
							| 36 |  | oveq2 |  | 
						
							| 37 | 1 2 4 | ringrz |  | 
						
							| 38 | 5 6 37 | syl2anc |  | 
						
							| 39 | 36 38 | sylan9eqr |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 35 40 | impbid |  |