Database BASIC ALGEBRAIC STRUCTURES Rings Unital rings ringm2neg  
				
		 
		
			
		 
		Description:   Double negation of a product in a ring.  ( mul2neg  analog.)
       (Contributed by Mario Carneiro , 4-Dec-2014)   (Proof shortened by AV , 30-Mar-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ringneglmul.b   ⊢   B  =  Base  R      
					 
					
						ringneglmul.t   ⊢   ·  ˙ =  ⋅  R      
					 
					
						ringneglmul.n   ⊢   N  =   inv  g ⁡  R        
					 
					
						ringneglmul.r    ⊢   φ   →   R  ∈  Ring         
					 
					
						ringneglmul.x    ⊢   φ   →   X  ∈  B         
					 
					
						ringneglmul.y    ⊢   φ   →   Y  ∈  B         
					 
				
					Assertion 
					ringm2neg    ⊢   φ   →    N  ⁡  X   ·  ˙  N  ⁡  Y  =  X  ·  ˙ Y        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ringneglmul.b  ⊢   B  =  Base  R      
						
							2 
								
							 
							ringneglmul.t  ⊢   ·  ˙ =  ⋅  R      
						
							3 
								
							 
							ringneglmul.n  ⊢   N  =   inv  g ⁡  R        
						
							4 
								
							 
							ringneglmul.r   ⊢   φ   →   R  ∈  Ring         
						
							5 
								
							 
							ringneglmul.x   ⊢   φ   →   X  ∈  B         
						
							6 
								
							 
							ringneglmul.y   ⊢   φ   →   Y  ∈  B         
						
							7 
								
							 
							ringrng   ⊢   R  ∈  Ring    →   R  ∈  Rng         
						
							8 
								4  7 
							 
							syl   ⊢   φ   →   R  ∈  Rng         
						
							9 
								1  2  3  8  5  6 
							 
							rngm2neg   ⊢   φ   →    N  ⁡  X   ·  ˙  N  ⁡  Y  =  X  ·  ˙ Y