Metamath Proof Explorer


Theorem ringm2neg

Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses ringneglmul.b B=BaseR
ringneglmul.t ·˙=R
ringneglmul.n N=invgR
ringneglmul.r φRRing
ringneglmul.x φXB
ringneglmul.y φYB
Assertion ringm2neg φNX·˙NY=X·˙Y

Proof

Step Hyp Ref Expression
1 ringneglmul.b B=BaseR
2 ringneglmul.t ·˙=R
3 ringneglmul.n N=invgR
4 ringneglmul.r φRRing
5 ringneglmul.x φXB
6 ringneglmul.y φYB
7 ringrng RRingRRng
8 4 7 syl φRRng
9 1 2 3 8 5 6 rngm2neg φNX·˙NY=X·˙Y