Metamath Proof Explorer


Theorem ringmgp

Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypothesis ringmgp.g G = mulGrp R
Assertion ringmgp R Ring G Mnd

Proof

Step Hyp Ref Expression
1 ringmgp.g G = mulGrp R
2 eqid Base R = Base R
3 eqid + R = + R
4 eqid R = R
5 2 1 3 4 isring R Ring R Grp G Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
6 5 simp2bi R Ring G Mnd