Metamath Proof Explorer


Theorem ringn0

Description: Rings exist. (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion ringn0 Ring

Proof

Step Hyp Ref Expression
1 vex z V
2 eqid Base ndx z + ndx z z z ndx z z z = Base ndx z + ndx z z z ndx z z z
3 2 ring1 z V Base ndx z + ndx z z z ndx z z z Ring
4 ne0i Base ndx z + ndx z z z ndx z z z Ring Ring
5 1 3 4 mp2b Ring